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Abstract—Integrated satellite-terrestrial network (ISTN) can
provide a continuous service for vehicular users in remote areas
with a seamless network coverage. However, considering the
difference in the usage costs between satellite and terrestrial
networks and the variability of services for latency requirements,
it is of great significance to design a cost-effective data offloading
decision for reducing network overhead and ensuring task delay
requirements. In this paper, we design a cost-effective data
offloading mechanism for vehicles in ISTN. The default trans-
mission for remote areas is via the satellite, where the terrestrial
networks can offload the data with intermittent coverage in
an opportunistic manner due to the vehicle mobility. To model
the diversity in service delay requirements, a virtual queue is
exploited to capture the residual maximum delay tolerance of
each service as time elapses. We formulate the satellite-terrestrial
collaborative transmission as a non-linear programming (NLP)
problem. To solve the problem, we propose a reinforcement
learning (RL)-based data offloading algorithm for real-time
decision making. Simulation results show that the RL-based
data offloading algorithm reduces the network overhead and
outperforms other baseline schemes we proposed.

Index Terms—Data offloading, integrated satellite terrestrial
networks, remote areas, reinforcement learning

I. INTRODUCTION

With the rapid development of the Internet of Vehicle (IoV)

and the improvement of vehicle intelligence, vehicles are no

longer only a means of transportation to meet people’s travel

needs but can provide in-vehicle infotainment (IVI) services

to meet various needs [1]. IoV primarily offer three services,

which are information service, vehicle intelligence service,

and the intelligent transportation service [2]. Among them, the

provisioning of information services is of great challenge since

the requirements of such services vary significantly [3]. Online

video conferencing services, for example, are more sensitive

to latency, whereas playback and downloading of online music

and videos on the Internet typically prefer data rate than the

latency.

Currently, there are two main vehicle communication and

networking technologies, i.e., dedicated short-range commu-

nication (DSRC) based on the IEEE 802.11p standard and

cellular vehicle-to-everything (C-V2X) communications [4].

Although these two technologies have complementary benefits

in terms of communication rate, latency, flexibility, and reli-

ability, the high dependency on network infrastructure such

as roadside units (RSUs) and base stations (BSs) makes

them unable to deliver services to vehicles within remote

areas [5], [6]. Combining the seamless connectivity of the

satellite network with the flexibility of the air network and

the high data rate access of the ground network, space-

air-ground integrated network (SAGIN) can provide users

with ubiquitous, high-quality network services [7]. Integrated

satellite-terrestrial network (ISTN) is a typical SAGIN network

architecture that combines the benefits of satellite networks

and terrestrial networks to enlarge network coverage, promote

network reliability, ensure service continuity, and provide

efficient transmission [8]. With the deployment of the mobile

edge computing (MEC) server, SAGIN is able to provide

ubiquitous, high-quality MEC services [9]. Software-defined

networking (SDN) and artificial intelligence (AI) are also

applied in space-air-ground integrated vehicular network to

manage SAGIN flexibly and efficiently, thus providing better

quality and more economical vehicle services for vehicular

networking [10], [11].

To use the satellite and terrestrial networks of SAGIN

flexibly and on-demand, an efficient data offloading strategy

is needed. A mobility-aware task offloading and migration

problem is proposed in [12], which aims to reduce the

migration cost due to the mobility of users. However, the

diversity of service requirements is not considered. In [9],

satellites and unmanned aerial vehicles (UAVs) are used to

deliver IoV services to vehicles within remote areas, and a

deep imitation learning approach is proposed to achieve real-

time decision making. Nonetheless, the cost for deploying and

maintaining the UAV is usually prohibitive, and is thus not

suitable for covering large remote areas. On the other hand, the

terrestrial networks, although may be deployed sparsely, can

also be used for data transmission. In [13], a data offloading

scheme for ISTN is proposed, which satisfies the different

demands of URLLC and eMBB and improves the network

availability. However, the mobility of users and the difference

in service costs between satellite and terrestrial networks are

not considered. In order to comprehensively consider the

mobility of users, the diversity of service requirements, and

the different costs between satellite and terrestrial networks, a

more cost-effective data offloading strategy is further required.

In this paper, the cost-effective collaborative task trans-

mission scheme is proposed for vehicular users with ISTN.

The remote areas are considered, where the cellular network
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provides intermittent coverage and the satellite network pro-

vides full coverage for vehicular users. Specifically, we use

an on-off process to model the mobility of vehicles. By

modeling the task arrivals, channel state, and task queues, the

final problem is formulated as a mathematical optimization

problem. Due to the mobility of vehicles and the dynamic

arrival of tasks, we propose a reinforcement learning (RL)

based data offloading method to obtain the optimal real-time

decision for the problem. The main contributions of this paper

are as follows:

• We use an on-off process to model the mobility of vehi-

cles in remote areas. Vehicle on-off states are calculated

by estimating the sojourn time of on and off states using

memoryless exponential distributions with parameters λ
and μ. By changing λ and μ, vehicles with different

mobility features can be simulated.

• For the convenience of the DDPG algorithm in observing

the queue state, a queue model is proposed to describe the

queue state of tasks with different maximum waiting time.

There are different task queues with different maximum

waiting time. Task arrivals will be appended to the end of

the corresponding task queue at each time slot t. These

task queues are merged into a single total queue in the

order of the maximum wait time.

• A cost-effective data offloading strategy for vehicles

within remote areas is proposed, and in order to achieve

real-time decision making, it is transformed into a RL

problem. We used the DDPG algorithm to solve this

problem. In addition, simulation results show that our

proposed data offloading strategy can achieve lower net-

work overhead than other baseline algorithms. We also

verify the effect of different mobility features on network

overhead, which reveals that the more frequently the

vehicle moves in and out of the coverage of terrestrial

networks, the less network overhead can be achieved by

the proposed RL-based algorithm.

The remainder of this paper is organized as follows. Section

II introduces the system model and formulates the cost-

effective data offloading problem for vehicles within remote

areas. In Section III, a data offloading strategy based on DDPG

is proposed to make real-time decision. Simulation results are

conducted in Section IV, where the effectiveness of the data

offloading strategy is verified. Section V concludes this paper.

II. SYSTEM MODEL

We consider an ISTN-based collaborative data offloading

model for vehicles within remote areas, as shown in Fig. 1,

where the LEO satellite network covers the whole area while

the cellular BSs are deployed sparsely. We assume vehicles

continuously send service requests to the LEO satellites, and

the LEO satellites can collaborate with the cellular BSs to

transmit the service data, where the data offloading decision

is made at the LEO satellite. Since transmitting data using

LEO satellites may lead to extensive costs, considering the

differences in delay requirements of tasks, the delay-tolerant

tasks can until the vehicle enters the coverage area of a cellular

LEO satellite

Vehicle

Cellular BS

Wireless links

Mobile path

BS coverage

Wireless links

Mobile path

BS coverage

LEO coverage

Fig. 1. ISTN-based collaborative data offloading model for vehicles within
remote areas.

BS and then use the BS for data transmission, which reduces

the network overhead.

Specifically, in a time slot t ∈ {1, 2, ..., T}, vehicles will

randomly generate a variety of service requests. First, the vehi-

cle will send the service request to the LEO satellite, and then

the LEO satellite will make a data offloading decision denoted

by at ∈ [0, 1], which determines the maximum amount of tasks

that can be transmitted by BS and LEO satellite. The service

request will be collaboratively transmitted by the BS and the

LEO satellite, with the BS having a maximum task amount of

at times the current total task and the LEO satellite having a

maximum task amount of (1−at) times the current total task.

It is important to note that the tasks can be fine-grained, so

the data transmitted by BS and LEO satellite is different.

A. Communication Model

In the ISTN-based collaborative data offloading model for

vehicles within remote areas architecture, only downlink for

communication between vehicles and BSs and LEO satellites

is considered, and the frequency bands used by BSs and LEO

satellites are different, so they do not interfere with each other.

From the perspective of a single vehicle, the downlink rates

of the BS and the LEO satellite to the vehicle in time slot t
are denoted by RB

t and RS
t , respectively. The downlink rate

of the BS to the vehicle can be calculated by

RB
t = BB log2

(
1 +

pBh
B
t

σ2

)
, (1)

where BB represents the channel bandwidth between the

vehicle and BS. pB represents the transmit power of the BS.

hB
t are the channel fading coefficients of the BS to vehicle

link. σ2 is the Gaussian white noise power.

Considering the effect of rain attenuation, the downlink rate

of the LEO satellite to the vehicle is expressed as

RS
t = ΛBS log2

(
1 +

pS(h
S
t )

2

σ2

)
, (2)
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where BS represents the channel bandwidth between the

vehicle and the LEO satellite. pS represents the transmit power

of the LEO satellite. hS
t is the channel fading coefficient of

the LEO satellite to vehicle link. Λ is the rain attenuation.

B. Mobility Model

To describe the process of vehicles intermittently accessing

BSs, we proposed a vehicle mobility model in ISTN based

on the on-off process proposed in [14]. Fig. 2 shows the

vehicle mobility model in ISTN, where the vehicle can access

LEO satellites seamlessly while intermittently accessing BSs

as it moves. The vehicle can receive the BS signal in the on-

state while it cannot receive the BS signal in the off-state.

The on-state and off-state sojourn time follow an unexpected,

memoryless exponential distribution with parameters λ and μ,

where λ and μ are the average sojourn times of the on-state

and off-state, respectively. The moving state of the vehicle can

be obtained by predicting the sojourn time of the vehicle in

on and off states using the exponential function and putting

them together sequentially.

LEO network

Cellular 
network

ON-state OFF-state ON-state

Fig. 2. Vehicle mobility model in ISTN.

C. Task Model

Vehicles can request services with different maximum wait-

ing time. The arrivals of tasks with different maximum waiting

time at time slot t are denoted by Ai
t, i ∈ {0, 1, ..., N}. i

indicates the number of task types, and it implies that the task

can wait at most i time slots before transmitting. We assume

the task arrivals of different types of tasks follow a normal

distribution and the parameters increase as the maximum

waiting time of the service increases [15]. Thus, tasks with

lower latency requirements will have more task arrivals per

time slot. Total task arrivals at time slot t can be calculated

by At =
∑n

i=0 A
i
t .

D. Queue Model and Data Offloading

To describe the task transmitting process, we exploit a queue

model, as shown in Fig. 3. Corresponding to the types of tasks,

there are also j ∈ 1, 2, ..., J task queues. These task queues

are arranged in order according to the maximum waiting time

to form a total queue. The queueing model is denoted as

L(t) � [L0(t), L1(t), ..., LJ(t)], where L(t) is the total queue

and [L0(t), L1(t), ..., LJ(t)] are task queues of different delay

requirements. Ai
t will join the end of the corresponding task

queue Lj(t) at the beginning of time slot t, where i = j. The

LEO satellite will then make an offloading decision at, and

the tasks will be collaboratively transmitted by the BS and the

LEO satellite.

Total task queue 

Transmit by BS and LEO: 

Max wait time=0

Max wait time=1

Max wait time=2

Max wait time=3

Max wait time=4
Total task queue 

Transmit by BS and LEO: 

Max wait time=0

Max wait time=1

Max wait time=2

Max wait time=3

Max wait time=4

Task queue 
...

Em
ergency increase

( )nL t

( )L t

B S
t tQ Q

Fig. 3. Queueing model.

The maximum amount of data that the BS can transmit in

time slot t is τRB
t , where τ is the length of the time slot. The

actual amount of data that the BS can transmit according to

the offloading decision at is denoted by

QB
t = min{atL(t), τRB

t }. (3)

Therefore, the network overhead of the BS in time slot t can

be calculated by

CB
t = β1Q

B
t . (4)

Similarly, the maximum amount of data that can be trans-

mitted by the LEO satellite in time slot t is τRS
t , and the

actual amount of data that can be transmitted according to the

offloading decision at is denoted as

QS
t = min{(1− at)L(t), τR

S
t }. (5)

The network overhead of the LEO satellite in time slot t can

be calculated by

CS
t = β2Q

S
t , (6)

where β1 and β2 are the unit costs of using BSs and LEO

satellites, respectively. The total cost to be paid by the vehicle

at time slot t is denoted as

Ct = CB
t + CS

t . (7)

The total amount of data that can be transmitted in time slot

t is

Qt = QB
t +QS

t , Q0 = 0. (8)

The amount of data that can be transmitted in different task

queues at time slot t can be denoted by the following formula

Qj
t =

{
min{Qt −

∑j−1
i=0 Qi

t, Lj(t)}, j �= J

Qt −
∑j−1

i=0 Qi
t, j = J

(9)

The total queue length at time slot t can be denoted by

L(t) = max{L(t−1)+At−Qt−1, 0}, L(0) = 0, Q−1 = 0.
(10)
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The update formula of task queues at time slot t is

Lj(t) =

⎧⎪⎨
⎪⎩
Aj

t+Lj+1(t−1)−Qj+1
t−1+Lt−1

j −Qj
t−1, j = 0

Aj
t+Lj+1(t−1)−Qj+1

t−1 , else

Aj
t , j = J

(11)

E. Problem Formulation

Different tasks have different needs for latency. Some need

to be transmitted immediately, while others can wait for

a while before being transmitted. Furthermore, the network

overhead of LEO satellite is many times that of cellular BS.

Waiting until the BS signal is received might save a lot of

network overhead for tasks that do not require immediate

transmission. Therefore, we must carefully analyze the above

situation to achieve the cost-effective goal.

Through the above modeling, we can express the long-term

cost optimization problem of vehicles in ISTN over a period

of time as the following mathematical model.

min
a

T∑
t=1

Ct (12)

s.t. 0 ≤ at ≤ 1, ∀t ∈ T (12a)

Qt ≥ L0(t), ∀t ∈ T (12b)

RB
t = BB log2

(
1 +

pBh
B
t

σ2

)
, ∀t ∈ T (12c)

RS
t = ΛBS log2

(
1 +

pS(h
S
t )

2

σ2

)
. ∀t ∈ T (12d)

Constraint (12a) restricts the range of the offloading deci-

sion. Constraint (12b) restricts the offloading decision of each

time slot to at least completing the transmission of tasks in

L0(t). Constraints (12c) and (12d) are generation rules for the

transmission rates of cellular BS and LEO satellite.

III. DATA OFFLOADING STRATEGY BASED ON DDPG

In this section, we propose a RL-based algorithm to solve

the optimization problem (12). Considering the continuous ac-

tion space of the problem, DDPG is exploited in our proposed

scheme. State space, action space, and reward function are the

three key elements of DDPG. According to the system model,

we define these elements as follows.

A. State Space

State space contains all the information about the system

that the environment can observe at time slot t, including

queue state, BS channel state, and LEO satellite channel state.

We denoted the state space at time slot t is defined as

st = {L(t), RB
t , R

S
t }, (13)

where L(t) � [L0(t), L1(t), ..., LJ(t)], and it contains in-

formation of all task queues. RB
t and RS

t represent the

channel rates of the vehicle to the BS and the LEO satellite,

respectively.

DDPG Algorithm

State

AgentEnvironment

Action

Reward

U
pdate

DDPG Algorithm

State

AgentEnvironment

Action

Reward

U
pdate

Total task queue 

Max wait time=0

Max wait time=1

Max wait time=2

Max wait time=3

Max wait time=4Total task queue 

Max wait time=0

Max wait time=1

Max wait time=2

Max wait time=3

Max wait time=4

...
Task queue 

S
tR

B
tR

( )L t
( )nL t

ta

tr

ts1ts

Fig. 4. DDPG algorithm flow for collaboratively data offloading.

B. Action Space

Based on the currently observed state st, the LEO satellite

needs to make an offloading decision at ∈ [0, 1] at each time

slot t to determine how much data should be transmitted

through the BS and the LEO satellite, respectively, in the

current time slot.

C. Reward Function

For state st and action at at time slot t, there is a

corresponding reward rt. Our goal is to reduce the network

overhead of the vehicle as much as possible while ensuring

service quality, so we define the reward function as the

following formula

rt = −(β1R
B
t + β2R

S
t ) + β3(Qt − L0(t)), (14)

where the first item of the formula is the network overhead

of the vehicle. Because the DDPG algorithm will maximize

the reward function Rt as much as possible, we turn it into

a negative number to minimize the overhead. The second is

a penalty for not completing a task on time, where β3 is the

penalty factor.

D. Data Offloading Algorithm Based on DDPG

Fig. 4 shows the flow of the DDPG algorithm for collabora-

tive data offloading. It can be seen that the LEO satellite acts

as an agent to execute the DDPG algorithm. The LEO satellite

must first obtain state information st from the environment,

which includes the channel rates and queue information of the

vehicle, and then give an action at by calculation. The next

state st+1 is obtained by applying the action at to the current

environment st. At the same time, the environment also gives

a reward rt for the update of the DDPG algorithm.

We designed a data offloading algorithm based on DDPG

as shown in Algorithm 1.

In steps 1-3. The DDPG network parameters are initialized.

In steps 4-8. The LEO satellite selects an action at according

to the current state st for each time slot t in each episode M .

The offloading decision at acting on the environment will get

the state of the next time slot st+1 and the reward of the current

action rt . In steps 9-14. The transformation (st, at, rt, st+1)
is stored in the replay buffer R, and the DDPG algorithm
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randomly samples a mini-batch of B transitions for the update

of itself.

Algorithm 1 DDPG-based data offloading algorithm

Input: N , λ, μ, T and number of episodes M .

1: Initialize the critic network Q(s, a | θQ) and actor μ(s |
θμ) with weights θQ and θμ.

2: Initialize the target network Q′ and μ′ with weights θQ
′ ←

θQ, θμ
′ ← θμ.

3: Initialize replay buffer R and mini-batch size B.

4: for episode = 1, 2, ...,M do
5: Generate a random initial state s1.

6: for t = 1, ..., T do
7: LEO satellite selects an action at = μ(st | θμ) +Nt

according to the current policy and exploration noise

as offloading decision.

8: Execute action at and observe reward rt according

to (14) and the new state st+1.

9: Store transition (st, at, rt, st+1) in R.

10: Randomly sample B transitions (st, at, rt, st+1)
from R.

11: Set yi = ri + γQ′(si+1, μ
′(si+1 | θμ′ | θQ′

)).
12: Update critic network by minimizing the loss of critic

network L(θQ),

L(θQ) =
1

B

B∑
i=1

(yi −Q(si, ai | θQ))2.

13: Update the actor network using the sampled policy

gradient ascent by

�θμJ ≈ 1

B

B∑
i=1

�aQ(si, ai | θQ)�θμμ(si|θμ) .

14: Update the target networks as:

θQ
′ ← τθQ + (1− τ)θQ

′
, θμ

′ ← τθμ + (1− τ)θμ
′
.

15: end for
16: end for
Output: Optimal policy μ∗ and offloading decisions at.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

DDPG-based data offloading algorithm. Values for each pa-

rameter are summarized in Table I.

We consider a remote area where a vehicle is driving. LEO

satellites can provide ubiquitous connectivity for vehicles.

There are several cellular BSs sparsely deployed on the

ground. The sojourn time of the on and off state of the vehicle

follows an exponential distribution with parameters λ = 5 and

μ = 15. The average task arrivals of Ai
t, i ∈ {0, 1, 2, 3, 4, 5}

are [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], respectively. We set the time

slot length as τ = 1.

To verify the effectiveness of the proposed DDPG-based

data offloading algorithm, we employ four baseline schemes

for comparison.

TABLE I
PARAMETER SETTING

Parameter BB BS Λ pB pS λ μ

Value 5Mhz 3Mhz 0.8 1dbm 20dbm 5s 15s

1. Random proportional offloading: This offloading scheme

randomly makes offloading decisions at ∈ [0, 1] in each time

slot, which is labeled as “Rand”.

2. Fixed offloading: This offloading scheme makes a fixed

offloading decision at = 0.5 each time slot, which is labeled

as “Fixed”.

3. Dynamic proportional offloading: This offloading scheme

dynamically adjusts the offloading ratio according to the

channel conditions of the BS and the LEO satellite, which

is labeled as “Dynamic”. And the data offloading decision is

denoted as at = RB
t /(R

B
t +RS

t ).
4. Base station first: This offloading scheme will give

priority to the BS to transmit tasks in the queue, and then

use the LEO satellite to transmit when the BS cannot transmit

all the tasks in the queue, which is labeled as “BS-first”. This

scheme can achieve the maximum throughput of ISTN.

Fig. 5 reveals the impact of the number of task types on

cost saved of the DDPG algorithm. The definition of “cost

saved” is the difference in network overhead between BS-first

and the DDPG algorithm. The DDPG algorithm can save more

network overhead when the number of task types increases.

That is because the DDPG algorithm reduces the satellite

usage for tasks that don’t require immediate transmission. Fig.

6 shows that regardless of the types of tasks, the decision

failure rate of the DDPG algorithm is close to 0, which shows

the reliability of the proposed DDPG algorithm. The definition

of the “fail rate” in this paper is the number of failed decisions

divided by the total number of time slots. We consider it a

failure if the offloading decision made in time slot t fails to

transmit the data in L0(t). It’s worth noting that we didn’t

consider the scenarios when the task types were 1 and more

than 6. Because when the task types are 1, the offloading

decision becomes deterministic, and the DDPG algorithm can’t

make cost-saving. And when the task types are greater than

6, task arrivals will exceed the network load, and the DDPG

algorithm can’t converge.

Fig. 5. Cost saved with task types. Fig. 6. Fail rate with task types.

Fig. 7 shows the changes in cost and fail rate with episode

when task types are 5. In Fig. 7(b), all the algorithms can
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reach zero fail rate except “Rand”. Combing Fig. 7(a) and

Fig. 7(b), the DDPG-based data offloading algorithm can get

the lowest network overhead with a zero fail rate compared

with other data offloading schemes. This is because the DDPG

algorithm can fully observe and benefit from the mobile state

of the vehicle and the channel state. The BSF scheme prefers

to transmit data via cellular BS and only uses the LEO satellite

when the total tasks in the queue exceed the transmission

capability of BS. As a result, BSF can also achieve a lower

cost. Nonetheless, the network overhead of the BSF scheme

is higher than that of the DDPG algorithm because it does not

consider the difference in the delay requirements of tasks.

(a) Cost (b) Fail Rate

Fig. 7. Cost and fail rate with episode when task types are 5.

We also study the impact of user mobility on the DDPG-

based data offloading algorithm. Fig. 8 shows the changes in

the cost saved with λ and μ when the task types are 5. It

can be seen that when λ and μ decrease, the DDPG algorithm

can get more cost-saving. Because the frequency of vehicles

moving in and out of the terrestrial network increases as λ
and μ decrease, more delay-tolerant tasks can be transmitted

via cellular BSs rather than the LEO satellites. Fig. 9 shows

the changes in fail rate with λ and μ when the task types are

5. It can be seen that the fail rate decreases as λ increases and

decreases as μ decreases.

Fig. 8. Cost saved with λ and μ. Fig. 9. Fail rate with λ and μ.

V. CONCLUSION

In this paper, we have investigated the vehicular data

offloading in ISTN to reach the cost-effective decision address-

ing the trade-off between the network overhead and the task

queuing. Based on the on-off mobility model of vehicles, the

queuing model of task arrivals with different maximum waiting

time is first established. To trade off the network overhead

of vehicles and the requirement for task latency, a non-linear

programming (NLP) problem is formulated to rationalize the

use of LEO satellites. RL-based algorithm is carried out

to solve this problem, and a DDPG-based data offloading

decision approach with cost-effectiveness is reached.
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