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Abstract—Task scheduling is a critical problem when one user
offloads multiple different tasks to the edge server. When a
user has multiple tasks to offload and only one task can be
transmitted to server at a time, while server processes tasks
according to the transmission order, the problem is NP-hard.
However, it is difficult for traditional optimization methods to
quickly obtain the optimal solution, while approaches based on
reinforcement learning face with the challenge of excessively large
action space and slow convergence. In this paper, we propose a
Digital Twin (DT)-assisted RL-based task scheduling method in
order to improve the performance and convergence of the RL.
We use DT to simulate the results of different decisions made by
the agent, so that one agent can try multiple actions at a time,
or, similarly, multiple agents can interact with environment in
parallel in DT. In this way, the exploration efficiency of RL can be
significantly improved via DT, and thus RL can converges faster
and local optimality is less likely to happen. Particularly, two
algorithms are designed to made task scheduling decisions, i.e.,
DT-assisted asynchronous Q-learning (DTAQL) and DT-assisted
exploring Q-learning (DTEQL). Simulation results show that
both algorithms significantly improve the convergence speed of
Q-learning by increasing the exploration efficiency.

Index Terms—task scheduling, digital twin, reinforcement
learning, exploration efficiency

I. INTRODUCTION

With the development of information technologies such as

Internet technology, artificial intelligence (Al), and computer

vision, users are increasingly demanding services such as

image recognition or VR/AR that require strong computing

capability. Since such services usually have a large task

size, offloading all these tasks to the cloud will result in an

overburdened communication. Therefore, offloading tasks to

the server in edge is emerged as an promising solution to

this issue. On the other hand, due to the deployment on edge

nodes, the computing capability of edge servers is limited.

As a result, edge servers usually processes only a few (very

likely one) tasks at the same time to provide ensuring service

quality. Meanwhile, user has multiple tasks with different

delay requirements that need to be offloaded, and only one

task can be transmitted at a time, the order of task offloading

will directly affect the quality of service. In [1] scheduling

tasks is proved a flow shop scheduling problem, and in [2] this

kind of problem is proved as NP-Hard. Thus, it is difficult to

optimize this problem with high accuracy and speed by using

tradition optimization method.

To get optimal or near-optimal solutions quickly, RL-based

on task sorting algorithms have attracted increasing attention.

Monte carlo tree search is applied in the specific context of

task scheduling [3]. However, there is a very large action

space in task scheduling problem, e.g., making it difficult

for RL to achieve excellent performance. This is because

usual RL agent uses exploration−exploitation to converge.

When agent use exploration, it chooses an random action

through a specific distribution to obtain the performance of

different permutations, and when agent use exploitation, it

samples the best performance action repeatedly to make the

algorithm converge. Obviously, exploration and exploitation
are contradictory, the higher exploration probability, the slower

it is to converge, while low exploration probability causes

agent has no knowledge of enough actions, leading to a

poor converge performance. Therefore, we need a better

exploration and exploitation that has efficient exploration

and high convergence speed.

DT is the virtual realization of entities in the real world

through digital form. Unlike traditional simulation models,

digital twins are the dynamic panoramic mapping of physical

entities. Through data interaction with the entity, it constantly

updates its own information to ensure the real-time, accurate

and comprehensive virtual mapping, so as to realize the clone

with high approximation on the virtual platform [4]. Further-

more, the virtual model can integrate various data from the

physical world, and use expert knowledge, AI and other means

to conduct comprehensive analysis, so as to better predict

future states. Therefore, the virtual body in the digital twin

is not only a simple copy of the information of the physical

entity, but a complete clone of the state, characteristics and

development trend of the physical entity. When a clone is

established, various complex actions can be quickly performed

on the virtual platform, and obtain the state of the system after

taking these actions, so as to provide support for decision-

making [5]. Compared with common methods of operating

in the real world, digital twins can significantly improve

efficiency and reduce costs.

Since DT can reproduce all the properties of real physical

space in digital space, it enables one agent to try different

actions at a time in a digital space, and also enables multiple

agents to interact with the same environment in parallel come

true. Therefore, to improve RL exploration efficiency, we
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introduce DT to get a higher performance RL with lower

time. In this paper, we use DT to enable the agent to learn

performance of multiple actions at a time, thus increasing

the exploiting efficiency of RL-based task scheduling. The

proposed methods show better performance and faster con-

vergence speed than traditional Q-learning based RL method.

To our best knowledge, this is the first paper using DT to

enhance RL performance, which not only gives a way to

further optimize RL-based decision methods, but also shows

a potential research direction for DT.

II. SYSTEM MODEL

We consider a single-user edge computing communication

system [1], where the server is deployed near the user to

provide service. At the beginning of each frame, the user

generates N independent tasks and the task i is denoted by

ti, i ∈ 1, 2, ...N . Due to the limited computing power and

energy of user, all tasks need to be transmitted to the edge

server for execution. In this paper, we assume that the server

uses a single-core CPU with constant CPU frequency, which

can only process one task at a time. After the server completes

a task, it immediately transmits the result back to the user.

A. Task and Communication Model

We denote the set of tasks of each communication frame

by Γ = {t1, t2, . . . , tN}. Each task is described by a ternary

vector ti = [di, εi, ci], where di denotes the amount of

the task data, εi is the task deadline, and ci represents the

task complexity which means the amount of CPU operations

required to process 1 bit of data. In particular, εi represents the

maximum delay can be tolerated from task generation to result

reception, which reflects the urgency of the task. The user

expects to receive all the results within the deadline, otherwise

the timeout tasks will be regarded as failure.

In order to avoid useless waiting time, the server executes

the tasks following the order of arrival. Assuming user can

only transmit the data for one task at each time. As there is

only one user in this edge computing system, we consider that

the channel state, transmission power and distance are known

at the service, so that the transmission rates of different tasks

are the same, which is denoted by R.

In the case of busy CPU, the task arriving at the sever will

wait in the memory queue. The memory of the server only

stores the data of tasks in the current communication frame.

Since the amount of tasks generated by a single user in a

frame is limited, we consider the memory of the server is

large enough so that there will be no data overflow. Therefore,

the order of task execution is the same as the order of data

transmission. The computing frequency of CPU is denoted by

fser . In addition, since the size of result data is much smaller

than the input data, we ignore the result transmission delay. For

the user, the most important concern is the task completion rate

and total completion delay, which depends on the queue order.

We denote the queue of N tasks as σ = [σ1, σ2, · · ·σN ], where

σi is the task of order i, σi ∈ {1, · · ·N}. Consequently, our

optimization goal is to ensure that all tasks can be completed

within the deadline, and to minimize the total completion

delay.

B. Problem Formulation

The completion time of task tj is denoted by T j
comp (σ),

which includes the delay of transmission, execution, and

queuing. The execution of a task only begins when all of its

data has been received by the server and there are no other

tasks ahead of the queue. So only when tj is at the head, it

will be transmitted and executed without any wait. Other tasks

must wait before transmission. We denote the whole data input

time of the j-th task by T j
ready (σ), which is given by

T j
ready (σ) =

j∑
i=1

dσi

R
, j = 1, · · · , N. (1)

Obviously, T j
comp (σ) includes T j

ready (σ) and the delay in the

server which depends on T j
ready (σ) and the completion time

of the task ahead. Thus, it can be determined by

T j
comp(σ) =

⎧⎪⎨
⎪⎩

T j
ready (σ) + dσj cσjf

−1
ser , j = 1

max
{
T j

ready (σ), T
j−1
comp (σ)

}

+dσj
cσj

f−1
ser , j > 1

(2)

where dσj and cσj represent the data size and complexity

of tσj
respectively, and when j = N , T j

comp (σ) is the total

completion time of the task sequence.

In order to simultaneously optimize the task success rate

and total completion time within a frame, we formulate the

queuing problem as

min
σ

N∑
i=1

T i
comp + ζI(T i

comp > εi), (3)

where I(∗) is indicator function, when ∗ is true I(∗) = 1,

otherwise I(∗) = 0, ζ is importance factor.

III. DT-ASSISTED Q-LEARNING METHOD

A. Q-learning

Reinforcement learning has become a powerful means to

solve the problem of resource management and task schedul-

ing in wireless communication networks [6]–[8], where Q-

learning [9] is a value-based algorithm which has good con-

vergence. The goal of reinforcement learning is to get the

optimal policy which means helping the agent maximize the

reward value. In most cases, the agent needs to take a series

of actions to complete a task and the reward are delayed, so

the expected total reward Q is seen as the evaluation function

of the action, which is given by Q =
∑∞

t=1 γ
t−1rt (st, at),

where γ is the discount factor, which represents the influence

of future states on the current policy, st and at are the state and

action at time t, respectively, rt (st, at) is the present reward

for taking at in st. Q-learning stores Q values by building a Q-

Table whose coordinates are states and actions. With the table,

the agent only needs to select the action with largest Q value
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to execute according to the state of environment. However,

it is often difficult to obtain the accurate Q-Table due to the

unknowns of the environment.

For large state spaces, Q-learning uses Temporal-Difference

method to approximate the true Q value. Specifically, when the

agent observes state st at time t, the action is selected by the

ε-greedy strategy, where in the greedy decision, the optimal

action is given by

aoptt = arg max
ai∈At

Q (st, ai) , (4)

where aoptt and At are the optimal action and the set of actions

at time t, respectively. Execute the selected action and enter the

next state, then update the Q value according to the feedback

of the environment, which is formulated as

Q (st, at) ← Q (st, at) + α
[
rt+1 (st, at) + γmax

a
Q (st+1, a)

]
,

(5)

where α is the learning rate, which is used to balance the ef-

ficiency and stability of learning. Based on the above method,

iterate the Q value until get a reliable Q-Table.

A key point of Q-learning is that the agent adopts the

ε-greedy strategy to choose actions, which can balance

exploitation and exploration well. In details, ε-greedy

means that when the agent makes a decision, there is a small

probability ε(ε < 1) to randomly select an action, and choose

the largest-value action with the probability of remaining 1−ε.
Assume that the initial state is s1, the set of available actions

is A1 and the known optimal action is aopt1 . After the agent

takes an action, it receives a reward r1 from environment.

In the decision-making process, the probability of each non-

optimal action being selected is ε
|A1| , where |A1| represents

the number of actions. The probability of choosing aopt1 is
ε

|A1| + 1 − ε. Therefore, by using the ε-greedy strategy, the

agent can make a good trade-off between exploitation and

exploration.

B. DT-Assisted Method

Real Environment Agent

Digital Twin

, ,

R
an

do
m

 A
ct

io
n

, ,, ,
, ,

Fig. 1. DT-assisted exploring Q-learning algorithm flowchart.

Algorithm 1 Digital Twin-Assisted Asynchronous Q-learning

Algorithm

1: Initialize all elements in Q-Table as 0, learning rate lr,

and update date cycle δ
2: for i = 1 to epoch do
3: ε = εmin + εe−iβ

4: With probability ε select a random action ar, otherwise

select ar = argmaxa Q(st, a)
5: Take action ar in real environment and get reward rr

and next state st+1,r

6: Qr(st, ar) = Q(st, ar) + lr(r+ γmaxa Qr(st+1, a)−
Qr(st, ar))

7: for j = 1 to φ do
8: j-th agent select a random action aj with probability

ε, otherwise select a = argmaxa Qj(st, a)
9: Qj(st, aj) = Qj(st, aj) + lr(r +

γmaxa Qj(st+1, a)−Qj(st, aj))
10: end for
11: if i%δ == 0 then
12: Q =

Q+
∑φ

j=0 Qj

1+φ
13: Qr = Q
14: for j = 1 to φ do
15: Qj = Q
16: end for
17: end if
18: end for

Algorithm 2 Digital Twin-Assisted Exploring Q-learning Al-

gorithm

1: Initialize Q(s, a) as 0 and learning rate lr
2: for i = 1 to epoch do
3: ε = εmin + εe−iβ

4: With probability ε select a random action ar
5: otherwise select ar = argmaxa Q(st, a)
6: Take action ar in real environment and get reward rr

and next state st+1,r

7: Randomly select φ unique actions a1, a1, · · · , aφ
8: Take these action respectively in DT to get reward

r1, r2, · · · , rφ and next state st+1,1, st+1,2, · · · , st+1,φ

9:

10: /* Update Q-Table */

11: Q(st, ar) = Q(st, ar) + lr(r + γmaxa Q(st+1, a) −
Q(st, ar))

12: for j = 1 to φ do
13: Q(st, aj) = Q(st, aj) + lr(r+ γmaxa Q(st+1, a)−

Q(st, aj))
14: end for
15: end for

Traditional Q-learning can only interact with the real phys-

ical environment and can only explore one action at a time,

so the exploration efficiency is low. In addition, since the real

physical environment can only accept decisions made by one

agent, the agent can only converge in one direction, and it
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is easy to fall into a local optimum. Inspired by [10] we

first tried to place multiple agents in DT, which means DT-

assisted asynchronous Q-learning (DTAQL). Assuming that

the simulation capability of DT is φ, which means DT can

complete the simulation of φ times interaction between the

agent and the environment within a tolerable time. Therefore,

we assume there are φ agents in DT, and each agent maintains

a Q-Table, and independently selects actions in DT to interact

with the environment according to the ε-greedy algorithm.

Then, each agent updates its Q-Table according to the actions

it takes and the rewards the get. When all agents have updated

the Q-Table δ times, they share their knowledge and update the

Q-Table. Since all agents are independent of each other, they

may take different actions, which improves the efficiency of

exploration. Besides, through periodically sharing knowledge,

the agents in the real physical environment can obtain rewards

of different scheduling order faster, thereby improving the

convergence speed. Because knowledge sharing is periodic,

each agent may take completely different actions in one cycle

and update its own Q-Table independently. This means that in

one cycle, the convergence direction of different agents may be

different, which is beneficial for the agents in the real physical

environment to avoid getting stuck in local optima and obtain

better convergence performance.

However, asynchronous reinforcement learning needs to

maintain multiple Q-Tables, which is memory consuming. Due

to periodically sharing knowledge, agents are not completely

independent. This leads to the fact that although the conver-

gence directions of the agents in one cycle may be different,

but on a large scale all agents still converge in the same

direction. Thus, the efficiency of exploration is limited, and

the convergence speed and performance is degraded.

Therefore, we proposed another DT-assisted exploring Q-

learning (DTEQL) method. In this method, only one agent is

needed. First, the agent selects an action ar to act on the real

environment according to the ε-greedy algorithm, and obtains

the rr and st+1,r of the real environment feedback. At the

same time, randomly select different φ actions a1, a2, · · · , aφ,

and apply these φ actions to the virtual environment of

DT respectively to obtain reward r1, r2, · · · , rφ and next

state st+1,1, st+1,2, · · · , st+1,φ. Then, according to Equation

5, updates the Q value of these actions. Compared with

DT-assisted asynchronous Q-learning, this method is more

random in action selection thus improving the exploration

efficiency. Moreover, because the agent always interacts with

the real environment according to the ε-greedy algorithm, the

probability of selecting the optimal action in the Q-Table is

increased, so that the agent can converge to the optimal value

faster.

IV. SIMULATION RESULT

In this section, we provide the simulation result to show

the efficiency for DT-assisted reinforcement learning method.

In simulation, task size d, task complexity c, and deadline ε
are all assumed to distribute uniformly, d ∼ Unif [0, 2Mb],
c ∼ Unif [0, 1000] CPU cycles and ε ∼ Unif [1, 5]s. The

CPU frequency of edge server is 10GHz. We randomly

generated 1, 000 tasks to evaluate the convergence speed and

performance for different algorithms. The learning rate lr is

0.1. We use the following algorithm for comparison.

• QL: The traditional Q-learning method using ε-greedy to

explore the environment. There is only one agent in the real

physical space, and the agent can only choose one action to

interact with the environment at a time. Due to the huge state

space, we set the minimum exploration rate εmin as 0.1 and

the exploration decay factor β as 5, 000.

• DTAQL: DT-assisted asynchronous Q-learning method.

Besides real physical space, φ agent is placed in the digital

space to interact with the virtual environment and periodically

share knowledge, and more details are presented in Algorithm

1. But when testing performance, we only test the performance

of the agent in the real environment. As for δ, all agent share

their knowledge every 512 iterations.

• DTEQL: DT randomly selects p different actions and

simulates the outcomes of these actions, thereby increasing

the exploration probability, and more details are presented in

Algorithm 2. Similar to DTAQL, we only test the performance

of the agent in the real environment.
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Fig. 2. Convergence performance of different algorithm with N = 8. Since
QL need over 100,000 iterations to converge, while other algorithms need far
much fewer iterations, so we show it in a separate figure specially.

TABLE I
PERFORMANCE OF THE DIFFERENT ALGORITHM

DTEQL φ =500 DTEQL φ =200 DTEQL φ =100 DTEQL φ =50 DTAQL φ =500 QL

Normalized Reward 1.0024 1.0024 0.9979 0.9406 0.7758 0.4235

Deadline Miss Ratio 0.0195 0.0195 0.0195 0.0273 0.0429 0.039

Average Delay 0.6435 0.6435 0.6453 0.6677 0.7321 0.8697

Convergence Time 5597 12752 25549 >25600 >25600 �25600

First, we evaluate the performance of DTAQL when N = 8,

under different number of agents φ in the DT. Obvious, as is

shown in Fig 2, the larger φ is, the better the performance

and fast convergence speed can be achieved. This is because

different agents will select actions in parallel when exploring

the environment [10]. As the number of agents φ in DT

increases, the possibility of agents exploring more actions
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TABLE II
TIME TO CONVERGE FOR THE DIFFERENT ALGORITHMS

DTEQL φ =500 DTEQL φ =200 DTEQL φ =100 DTEQL φ =50 DTAQL φ =500 QL

N = 6 102 295 510 1047 1284 >25600

N = 7 755 2497 3873 8795 10239 �25600

N = 8 5597 12752 25549 >25600 >25600 �25600

will also increase, so that through periodic knowledge sharing

improves the decision-making ability of the agent in the real

physical environment. However, due to the periodic sharing of

knowledge between agents, each agent actually has a similar

exploration direction on a large scale, so the increase of

agents does not significantly improve performance. Moreover,

because knowledge sharing is periodic, the performance of

agents in real physical environments shows a step-up trend.

Then, we test the performance of DTEQL. Similar to

DTAQL, the convergence speed increases as φ increases. But

when φ is with the high value region, as φ increases, the rate

at which the convergence speed improves gradually decreases.

As is shown in Fig 2, DTEQL converges faster for DTAQL

even when phi is small than DTAQL with φ = 500. The

reason is that DTEQL randomly select φ different actions,

thereby improving the exploration efficiency, and since the

agent in the real physical environment still likes the ordinary

Q-learning method, using the ε-greedy to select optimal ac-

tion, which increases the sampling probability of the optimal

action and improves the convergence speed. Besides, because

DTEQL does not need to store multiple Q tables, its storage

consumption is also less than DTAQL.

In Table I, we show specific data on reward, average task

complete delay, deadline miss ratio, and number of times re-

quired to converge for different algorithms, if no improvement

in algorithm performance can be observed during training,

we use � 25600 to denote it. Limited by training time, we

only trained 25, 600 times for each algorithmwhich is also a

very long time. For DTEQL, when φ is greater than 200, the

algorithm can always converge within 25, 600 training times,

and the performance after convergence is exactly the same. But

as p increases, the convergence speed also increases. When φ
is 100, we can see that the reward has decreased, but deadline

miss ratio keeps constant.This shows that although the task

processing delay increases when DTEQL fails to converge

completely, the algorithm can still ensure that all tasks are

completed within the deadline. Although the performance of

DTAQL is obviously better than that of the ordinary Q-learning

method, it is much weaker than DTEQL in this problem.

Table II shows convergence time for different algorithm

under different N . As the task number N decreases, the action

space of the scheduling problem decreases, and the algorithm

requires smaller φ to converge. This means we can adaptively

change φ of DT, so as to reduce the construction cost of

DT, since stronger DT means more accurate data and more

advanced building technology [11], which inevitably bring

higher price.

V. CONCLUSION

In this paper, we have investigated the task scheduling

for edge offloading with the assistance of DT. By using

DT to enrich the action space, we have proposed two DT-

assisted RL algorithms to let the agent try many actions at

the same time or multiple agents independently interact with

the environment and exchange their knowledge periodically.

Simulation results have shown DT can significantly assist

improving the exploration efficiency, thereby the convergence

speed of Q-learning can be increased and its convergence

performance can be improved. Besides, users can experience a

higher quality of service with lower latency by our proposed

scheme. For future research, we will study the performance

of DT-assisted task scheduling in more complex network such

as space-air-ground integrated networks, whose action space

is continuation.
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