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Abstract—As a fundamental problem, numerous methods are
dedicated to the optimization of signal-to-interference-plus-noise
ratio (SINR), in a multi-user setting. Although traditional model-
based optimization methods achieve strong performance, the high
complexity raises the research of neural network (NN) based
approaches to trade-off the performance and complexity. To
fully leverage the high performance of traditional model-based
methods and the low complexity of the NN-based method, a
knowledge distillation (KD) based algorithm distillation (AD)
method is proposed in this paper to improve the performance and
convergence speed of the NN-based method, where traditional
SINR optimization methods are employed as “teachers” to assist
the training of NNs, which are “students”, thus enhancing
the performance of unsupervised and reinforcement learning
techniques. This approach aims to alleviate common issues
encountered in each of these training paradigms, including
the infeasibility of obtaining optimal solutions as labels and
overfitting in supervised learning, ensuring higher convergence
performance in unsupervised learning, and improving training
efficiency in reinforcement learning. Simulation results demon-
strate the enhanced performance of the proposed AD-based
methods compared to traditional learning methods. Remarkably,
this research paves the way for the integration of traditional
optimization insights and emerging NN techniques in wireless
communication system optimization.

Index Terms—signal-to-interference-plus-noise ratio, neural
network, algorithm distillation, convergence speed

I. INTRODUCTION

The optimization of the signal-to-interference-plus-noise
ratio (SINR) has long confounded countless researchers pur-
suing the evasive grail of the state-of-the-art (sota) algo-
rithm. From the classical water-filling approach to cutting-
edge game theory and convex optimization methods, myriads
of proposed techniques promise performance improvements
[1]. However, the unacceptable latency in implementing these
complex algorithms impedes their practical application. Thus
the meteoric rise of efficient deep learning methods has opened
new prospects, spurring the exploration of neural network
(NN)-based techniques to optimize SINR [2]. The flexibility
of NNs - from multilayer perceptrons (MLP) [3] to graph
neural networks (GNN) [4]–[6], combined with varied training

techniques like reinforcement learning [7] and unsupervised
learning [4] - suggests that with sufficient data, even de-
signers unfamiliar with communications theory can develop
satisfactory SINR optimization. This begs the rethinking of
the question: what is the essence of traditional optimization
versus neural techniques? Clarifying their distinct features can
guide superior algorithm design.

Traditional methods boast outstanding performance given
ample computational resources, even surpassing sophisticated
NN-based techniques including GNN [4]. In contrast, NNs
offer comparable performance through simple matrix multi-
plications and low latency [8], [9], sacrificing the traditional
optimization for blazing speed. Besides performance and in-
ferencing latency, training NNs presents unique obstacles in
optimizing SINR. While high performance requires expansive
datasets and extended training, simply extracting network
features fails to capture a vital characteristic: the optimality
guarantees of classical techniques. Rather than a blank slate
like Go, many SINR optimizations have known bounds, offer-
ing insights into the structure of high-quality solutions.

Inspired by knowledge distillation (KD) [10], which trans-
fers knowledge from a large high-performance teacher NN
into a small student network, the high-performance traditional
optimization method is regarded as the large teacher model in
this paper, where arbitrary NN models can be regarded as the
student model to learning features of performance guaranteed
solution from the traditional methods. The main contributions
of this paper are as follows.

1) An algorithm distillation (AD) approach is proposed to
transfer optimization knowledge from traditional SINR
optimization methods to neural network (NN) models.

2) Traditional methods are utilized as teacher models, guid-
ing NN student models to achieve enhanced performance
and accelerated training through the AD framework.

3) The AD framework enables integrating insights from
performance-guaranteed traditional optimization into di-
verse NN architectures (MLPs, GNNs) and training tech-
niques (reinforcement learning, unsupervised learning).

ar
X

iv
:2

30
8.

07
51

1v
1 

 [
cs

.L
G

] 
 1

5 
A

ug
 2

02
3



4) Simulation results show significant improvements in
NN-optimized SINR performance and convergence
speed through AD across various NN models and train-
ing approaches.

II. NN FOR SINR OPTIMIZATION

In order to exemplify that knowledge from traditional algo-
rithms can be migrated to NNs using knowledge distillation,
this paper uses the classical broadcast resource management
problem as a special example to explore its auxiliary perfor-
mance for neural network training.

A. System Model and Problem Formulation
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Fig. 1. An illustration of a K-user interference channel.

In this paper, we consider a D2D network where there are
K pairs of senders and receivers who need to communicate
with each other, randomly distributed in the plane, and since
all users share the same frequency band for communication,
there are K×(K−1) pairs of interfering links in addition to the
K communication links. The interference relationship between
users can be modeled as a graph as shown in Fig. 1. Since the
interference between distant users is small, we draw directed
edges between two nodes only when the distance between
the transmitter and receiver is below a certain threshold.
Remarkably, this scenario setup can be easily applied to a
single-BS network where multiple users use the same resource
block (RB) with the same base station by simply considering
the base station as the receiver in all links.

The objective of radio resource management is to maximize
the sum rate of all K users, which can be formulated as
follows.

max
p

K∑
i=1

log2

(
1 +

pihi,i∑
j ̸=i pjhj,i + σ2

)
, (1)

where pi is transmission power of the sender of link i, and hi,j
is the channel gain from the sender in link i to the receiver in
link j.

B. Different Training NN Methods for SINR Optimization

The rapid development of NN training techniques has given
rise to a number of NN training methods, including supervised
learning (SUP) based on data labels, unsupervised learning

(UNSUP) without data labels, and reinforcement learning (RL)
by rewarding the training of NNs, and in this subsection
will present how different training methods can achieve the
optimization of NNs for neural networks and discuss their
respective features.
•Supervised Learning as an NN training method that

requires the optimal solution p∗ of (1) as the label, was
widely used in early NN-based SINR optimization methods.
In the process of training an NN using supervised learning,
the parameters of the NN θ need to be updated to make the
broadcast resource allocation scheme p of the output of the
NN as similar as possible to the label p∗, so the θ of the F
are updated according to the following equation.

θ = θ − α∇p∥p∗ − p∥p=F(h,w;θ)∇θF(h,w;θ), (2)

where α is the learning rate. Although training NNs using
supervised learning is simple and efficient, there are two insur-
mountable challenges to using supervised learning: obtaining
optimal solutions as labels and overfitting. When K is large,
it is not possible to obtain p∗ in acceptable time using brute
force search, so the so-called p∗ treated as a label is actually
a solution to the traditional optimization algorithm, whose
optimality cannot be guaranteed since the (1) is non-convex,
therefore, the performance of NN trained to be supervised
learning is usually poorer than traditional methods. Moreover,
according to (2) the objective of the NN is to minimize the
distance between the output and the label, which encourages
the NN to learn the distribution of labels to minimize the
∥p∗ − p∥. Thus, once the distribution of p∗ corresponding to
the test environment is different from that of the labels, the
performance of the NN trained by supervised learning drops
dramatically, which is also known as overfitting. However,
it can also be shown that supervised learning can make
the NN learn the features and distributions of the solutions
corresponding to the labels, which is the inspiration for our
proposed algorithm.
•Unsupervised Learning is a promising method for train-

ing NNs for solving optimization problems that have emerged
in the last two years. By transforming the optimization prob-
lem into a derivable loss function, the NN parameters can be
updated directly using the following chain derivation.

θ = θ + α∇pH(p|h,w)p=F(h,w;θ)∇θF(h,w;θ), (3)

where H(p|h,w) =
∑K

i=1 wi log2

(
1 +

pihi,i∑
j ̸=i pjhj,i+σ2

)
.

Compared to RL, using unsupervised learning for training not
only also removes the dependence on labeling, enabling the
NN to learn h and w features directly, but also gets rid of
the delay of exploration efficiency on the training speed of
the NN. However, since (1) is non-convex, optimizing the
value of p along the direction of the gradient at the point
of p in the output of the NN does not guarantee its global
convergence performance, although it can make p close to the
local optimal point. So a feasible way to further optimize the
training of unsupervised learning is to supplement the direction
information between p and p∗ when calculating the parameter
gradient of NN.



•Reinforcement Learning updates the NN parameters
based on the sum of the SINRs of all users that can be reached
at the current hand w in the p output of the NN by letting the
NN interact with the environment continuously so that the p
output of the NN can obtain higher values of (1). Since p is
continual, thus, only the deterministic policy gradient (DPG)
based RL algorithms that can optimize continuous variables
are discussed in this paper. In the DPG, the θ are updated as
follows.

θ = θ + α∇pV(p|h,w;θv)∇θF(h,w;θ), (4)

where V is the value NN used to evaluate the SINR of the p
output by F under h and w. Generally, DPG-based methods
are used to optimize the case where the objective function
is not derivable because the objective function can be fitted
using the derivable value NN V . Despite the fact that (1) is
derivable, the use of DPG-based methods to optimize (1) is
still of interest in this paper, this is because the nature of (1)
does not dramatically affect the use of DPG-based methods,
and optimizing (1) as an example still exemplifies the DPG-
based RL algorithms’ ability to optimize the nature on resource
management. A distinctive feature of PG can be seen in (4),
in addition to the policy NN F a value NN V also needs
to be trained, and according to [11] the parameters θv of V
are updated as θv = θv − α∥V(p|h,w;θv) − r∥, where r is
the objective value of (1). The performance of the V highly
relies on the sampling efficiency. Since there are no labels
in RL for the NN to learn, the NN needs to obtain higher
rewards by constantly adjusting its outputs, and while this
helps the NN learn outputs that perform better than the labels,
it can also lead to insufficient sampling efficiency and training
because the NN adopts a near-random sampling approach
in exploring the performance of different outputs instead of
purposely exploring the potentially superior actions. latency
is high. Therefore, how to design appropriate algorithms to
guide NNs to sample in the local action space where high-
performance solutions are more likely to be obtained, instead
of randomly exploring, will help to significantly improve the
performance and training speed of RL-based NN algorithms.

C. Different NN Architectures for SINR Optimization

Different training methods can provide different parameter
update directions for the NN. Still, the structural characteristics
of the NN itself determine the difficulty of optimizing the NN
parameters using that update direction, so a wide variety of
NN architectures have been applied to optimize SINR.

•MLP is the simplest structure and the most widely used
NN architecture. In the MLP-based approach, both h and w
are expanded into one-dimensional vectors and concatenated
together for input into the MLP, which obtains the final output
after multiple cumulative matrix multiplication operations with
nonlinear activation functions ϕ(·), detailed as follows.

F(h,w;θ) =
∑
i

ϕ(θi[h,w]), (5)

where θi is trainable parameters matrix.

•GNN has been the focus of more and more researchers
in recent years due to its high computational efficiency
and performance since it can extract topological features of
communication networks. The GNN first uses the message
extraction function φ(·) to obtain the features of neighbors
for node i as follows.

mi = ⊕j∈N (i)φ(hj,j , wj , hj,i), (6)

where N (i) is the set of neighbors of node i, and ⊕(·) is a
permutation invariant function, such as

∑
and max. Then the

transmission power pi of link i is output by the node i in the
GNN as follows.

pi = ψ(hi,i, wi,mi). (7)

Different NN architectures are used in different scenarios
due to their different characteristics, and it is usually necessary
to determine the kind of NN architecture to be used according
to the specific scenario characteristics, so a good training
assistance method should apply to a wide variety of NN
architectures and can be applied in different training methods.

III. DISTILLING ALGORITHM KNOWLEDGE BASED
TRAINING METHOD

ℓ = ℓUNSUP/RL + 𝛽𝛽ℓ𝐀𝐀𝐀𝐀Training 
data 𝒙𝒙

gradient

Algorithm

NN model

Fig. 2. Proposed algorithmic distillation framework, where ℓUNSUP/RL
denotes the loss function for traditional unsupervised and reinforcement
learning , and ℓAD denotes the supervised loss for algorithmic distillation..

A. AD-Assist Unsupervised Learning and Reinforcement
Learning

Generally, the larger NN model leads to higher performance
and computing complexity. However, for latency-sensitive
scenarios of SINR optimization, Pursuing only high perfor-
mance leads to excessive computational complexity, making
the increase in decision latency of the algorithm itself difficult
to compensate for the decrease in data transmission latency,
which is also a general challenge in the DL areas. Therefore,
in [10] KD is proposed to distill the knowledge from a high-
performance large teacher NN G to a small student NN F
by jointly minimizing the distribution divergence between the
output of the teacher model and the student model and loss
function value of the student model. Thus the parameters θ of
F are updated as follows.

ℓ = H(p)p=F(·) + β∥p− g∥, (8)
θ = θ − α∇p ℓ∇θF( · ;θ), (9)



where p and g are outputs of F and G, ℓ is the updating
gradient of the θ, and β is the weighting factor of KD.
Although there are no high-performance large pre-trained
models in the field of broadcast resource management similar
to those recognized in the fields of computer vision (CV) and
natural language processing (NLP) that can be used as teacher
models, the performance of some traditional methods, such as
WMMSE [12] and FPLinQ [13], are recognized. Therefore,
the resource allocation pfp generated by the FPLinQ can be
used as the teacher distribution, and the student model F is
trained to minimize the difference between the output p and
pfp, while obtaining the higher reward R when trained by RL
and minimizing the H(p|h,w) when trained by unsupervised
learning.

Since unsupervised learning can directly output determinis-
tic p, in the algorithmic distillation framework, the AD term
can be added directly to the chain derivation in (3) as

θ = θ + α∇p (H(p|h,w) + β∥p− pfp∥)∇θF(h,w;θ),
(10)

Similarly, DPG-based RL algorithms can be trained assisted
by the AD as following

θ = θ + α(∇pV(p|h,w;θv) + β∥p− pfp∥)∇θF(h,w;θ),
(11)

From (10) and (11), the update direction of the NN gradient
depends only on the output p, so the AD-assisted training
approach can be applied to a wide range of NN architectures,
including MLPs, CNNs, GNNs, etc., since the difference lies
only in the way the data features are extracted.

B. Discussion of AD-Assisted Method

(10) and (11) can be plainly understood as the simultaneous
application of supervised learning and unsupervised/RL to
train the NN, which, while explaining the performance of
(10) and (11) to a certain extent, can be made possible by
certain deformations to make the NN in the training process
enjoy the advantages of both supervised learning and unsuper-
vised/RL and avoid their respective disadvantages. Firstly, at
the beginning of training the NN, a large β value can be set to
improve the training speed by directly learning the distribution
of pfp so that it no longer needs to randomly sample p in the
feasible domain, and minimizing the distance of pfp from
p for a specific h and w can provide a gradient direction
that is closer to p∗, thus reducing the problem of the gradient
direction being so different from the global optimal direction
due to the non-convexity of (1). Moreover, by decreasing the
value of β as the number of training epochs increases, the NN
also needs to learn not only the distribution of pfp to reduce
the error of the supervised term, but also learns how to extract
features of communication networks from the H(·|h,w) or the
value R of the objective function (1) to maximize the objective
value, where the overfitting challenge of supervised learning
can be alleviated, which can be proved by simulation results
in the next section.

IV. SIMULATION RESULTS

In this section, we provide simulation results under different
neural network architectures and training patterns to validate
the effectiveness of the proposed AD framework. For the
proposed AD training framework, we give three strategies for
setting the distillation weights β: fixed weights (AD w/ fixed
β), increasing weights with training (AD w/ increasing β), and
decreasing weights with training (AD w/ decreasing β). The
performance of these three strategies is demonstrated in the
following results.

Based on the different sources of training data, we catego-
rize the training patterns into two types, i.e., dataset pattern
and RL pattern. Among them, dataset pattern trains the model
through a fixed dataset and RL pattern trains the model by
making it interact with the environment. The training objective
in all cases is to maximize the sum rate. For the neural
network setting, we use Pytorch to implement MLP and DGL
to implement GNN [3], [14]. The channel state is taken as
the input to the neural network and the output is the transmit
power of each user. During training, we use SGD optimizer
to update the model parameters.

A. Performance Evaluation of AD-Assist Training in Dataset
Pattern

Fig. 3 shows the performance of training MLP with different
methods in dataset pattern. When unspecified, the number of
users K = 20, the number of training data and test data are
2000 and 1000 respectively. Fig. 3(a) shows the convergence
performance of MLP in dataset pattern. It can be seen that in
this case, ADs achieve better final performance than SUP and
UNSUP, and AD w/ decreasing β has optimal performance and
convergence speed. Fig. 3(b) shows the performance of MLP
with different user numbers in dataset pattern. It can be seen
that ADs have the optimal performance. As the user number
increases, the sum rate of the different methods increase first
and then decrease, this is because the theoretical maximum
sum rate increases as the user number increases, so the rate
obtained by the model increases. However, an increase in the
user number also leads to an increase in the complexity of
power allocation, and when the user number increases to a
certain level MLP is no longer capable of solving the problem
due to the limitations of its own characterization capabilities,
and therefore significantly deviates from the optimal solution,
resulting in a rapid deterioration of the performance. Fig.
3(c) shows the performance of MLP with different numbers
of training data. It can be seen that ADs achieve optimal
performance in most cases. When the dataset is small, SUP
performs significantly better than UNSUP, and as the data
size increases, UNSUP outperforms SUP, which suggests that
compared to SUP, UNSUP is more suitable for training MLP
with large datasets.

Fig. 4 shows the performance of training GNN with differ-
ent methods in dataset pattern. When unspecified, the number
of users K = 40, the number of training data and test data are
1000 and 500 respectively. Fig. 4(a) shows the convergence
performance of GNN in dataset pattern. It can be seen that
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Fig. 3. Performance comparison of MLP training in dataset pattern.
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Fig. 4. Performance comparison of GNN training in dataset pattern.

Fig. 5. Convergence performance of MLP in RL pattern.

ADs outperform the other methods and AD w/ decreasing
β achieves the optimal final performance and convergence
speed. UNSUP has better final performance than SUP but
slower convergence speed. Fig. 4(b) shows the performance
of GNN with different user numbers in dataset pattern. It
can be seen that ADs can achieve optimal performance. The
performance of SUP is better when the number of users is
small, while UNSUP performs better when the number of
users is large. In addition, no performance deterioration with
increasing number of users similar to that in Fig. 3(b) is
observed since GNN has a stronger characterization capability

Fig. 6. Performance of MLP with different user numbers in RL pattern.

than MLP in dealing with this problem. Fig. 4(c) shows
the performance of GNN with different numbers of training
data. Similar to MLP, ADs achieve optimal performance when
training with different datasets. SUP outperforms UNSUP
when the dataset is small, while UNSUP outperforms SUP as
the number of data increases. Among the various ADs, AD w/
fixed β and AD w/ increasing β are more suitable for small
datasets and AD w/ decreasing β is more suitable for large
datasets.



B. Performance Evaluation of AD-Assist Training in RL Pat-
tern

Fig. 6 shows the performance of MLP with different user
numbers in RL pattern. It can be seen that the ADs perform
optimally and the SUP is weakest in the RL pattern. Due
to the large amount of data used to train the model in RL
pattern (up to several hundreds of thousands), the performance
is higher than the dataset pattern for the same user number and
no deterioration of the performance with the increase in the
number of users is observed. Fig. 5 shows the convergence
performance of MLP in RL pattern when K = 10. It can be
seen that the final performance of ADs is better than SUP.
Although the final performance of RL is close to AD, the
convergence is much slower.

Fig. 7. Convergence performance of GNN in RL pattern.

Fig. 8. Performance of GNN with different user numbers in RL pattern.

Fig. 7 shows the convergence performance of GNN in RL
pattern when K = 40. It can be seen that ADs and SUP
converge at a similar speed and the final performance of ADs
is significantly better than that of SUP. Furthermore, the RL
method fails to converge at all, suggesting that the RL method
is not applicable to GNN architectures in this problem. Fig. 8
shows the performance of GNN with different user numbers
in RL pattern. It can be seen that similar to MLP, as the
number of users increases, the performance of ADs and SUP

improves with it, with ADs always outperforming SUP. Since
RL cannot converge in this scenario, it always maintains poor
performance.

V. CONCLUSION

In this paper, an AD-based NN training assistance method
is proposed for SINR optimization in wireless networks was
conducted, which efficiently mitigated the limitations inherent
in the existing NN training methods, including unsupervised,
and RL. Simulation results have proven the proposed AD
approach significantly can enhance the learning efficiency and
performance of the existing methods by utilizing the targets
provided by traditional algorithms. By applying the proposed
scheme in the network, the performance and convergence
speed of numerous NN-based optimization methods can be
enhanced by training assisted with proposed AD methods. For
further research, we will explore how to effectively utilize the
knowledge of traditional algorithms to improve training results
in more complex problems and NN training methods.
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