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Abstract—Mobile edge computing (MEC) can be used to
reduce the task delay for users with limited computing re-
sources. However, in 6G networks, the diversity of tasks is
greatly increased. For those extremely delay-sensitive small-size
computing tasks, the inference delay of neural network (NN)-
based algorithms such as resource allocation and task offloading
cannot be ignored. As a hyperparameter, the inference cost of
NN is usually difficult to adjust. Dynamic neural network (DyNN)
is an emerging technique that improves the model efficiency by
adjusting the network architecture on-demand according to the
sample characteristics during inference. In this paper, we propose
a DyNN-based resource management method for MEC that
dynamically adjusts the depth and width of the NN according to
the features of the task, improving computational efficiency and
achieving a balance between inference delay and the management
performance of computational and communication resources.
Furthermore, to reduce the training cost of DyNN, a new training
method is proposed in this paper, where all the blocks in
DyNN are gradually trained in the order of size. Simulation
results demonstrate that the proposed DyNN-based resource
management method outperforms the traditional optimization
algorithm and the static-NN-based method.

Index Terms—Mobile edge computing, inference delay, dy-
namic neural network, training cost.

I. INTRODUCTION

In recent years, mobile edge computing (MEC) has attracted
soaring attention to relieve the backhaul burden by moving the
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caching and processing of the task from cloud to the network
edge [2]. This means that MEC significantly reduces the mo-
bile computing task delay, which is attractive for meeting the
stringent delay requirements of high urgency applications, and
thus is extensively used in augmented reality (AR), Internet-of-
Things (IoT), connected vehicles and so on [3]–[7]. However,
with the development of 6G, the increasingly complexity and
dynamics pose challenge on MEC resource allocation and task
scheduling. The optimization problem of MEC system can be
seen as a generalization of the classical bin packing problem
and is therefore an NP-hard problem [8], [9]. For this kind of
problem, although the traditional optimization algorithm can
give a satisfactory solution, it is very time-consuming.

As outlined by the International Telecommunication Union
(ITU) [10], 6G networks need to offer unparalleled application
diversity, catering to a wide range of user demands. To effec-
tively address the varied requirements of different applications,
6G networks must incorporate highly flexible technologies and
provide customizable solutions. In this regard, AI emerges as
a critical component, surpassing the capabilities of traditional
approaches and enabling the seamless integration of intelli-
gence into future networks. As a representative technique of
AI, deep learning (DL) is considered as a potential solution,
since it can extract the hidden information contained in mas-
sive data and learn the complex interrelationships that are
difficult to be discovered. In particular, neural network (NN)
models are widely used to perform various computing tasks
in mobile networks and greatly improve the quality of service
[11], [12].

There are various resource allocation problems in MEC,
such as bandwidth, CPU frequency, offloading decisions, and
so on. The NN models can extract optimization problems from
a large number of application scenarios, and then iterate using
appropriate gradient descent methods to improve the decision
performance. To improve the network utility of vehicular edge
computing networks, a deep reinforcement learning-based
computational offloading and resource allocation method is
proposed [13]. Xu et al. propose an efficient reinforcement
learning-based resource management algorithm for renewable
energy scenarios to instantly learn the optimal policy for
workload offloading and server configuration to minimize the
long-term system cost [14].

Despite the success of DL in wireless networks, there has
been limited research on inference delay, which refers to the
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delay incurred by NNs during inference, particularly for delay-
sensitive tasks. A typical MEC task’s service delay consists of
inference delay and processing delay. Inference delay is the
time for executing task scheduling or resource orchestration
algorithms, while processing delay is the time for task data
communication and execution. Processing delay relies on task
scheduling, resource allocation, and algorithm performance,
such as DL model accuracy. In contrast, inference delay
is influenced by algorithm computational complexity and
device computing capability. Although conventional wireless
resource allocation problems often neglect inference delay, it
becomes crucial in ultra-low latency B5G/6G MEC services.
Microsecond-level service delay is demanded by various 6G
applications [15], highlighting the significance of minimizing
inference delay. Services with very small data and workload
per decision slot emphasize reducing inference delay, while
those with substantial data and workload prioritize processing
delay, categorizing them as inference delay-sensitive and pro-
cessing delay-sensitive services, respectively. Recognizing the
ITU’s assertion regarding of 6G network applications [10], it
is evident that 6G networks must possess highly flexible tech-
nologies and offer tailored solutions to effectively accommo-
date diverse application scenarios. For an MEC server, it has to
continuously adjust the resource management algorithms since
both two categories of services can be requested by the users
it serves. However, it is very challenging since inference delay
and processing delay are often a tradeoff. Generally, the NN
model inference performance (for MEC resource management,
the NN model performance determines the processing delay)
is proportional to the size of the NN model. On the other
hand, the inference delay is also proportional to the size of
the NN model, since a larger model requires a larger amount
of computing. Worse still, due to the non-linearity of the NN
models, usually it is difficult to derive direct mathematical
relation between inference performance and inference time.

In recent years, a new NN structure called dynamic neural
network (DyNN) has attracted much attention, which can
dynamically change the structure or parameters of the NN
to achieve specific operations during the inference process,
thereby significantly improving the computational efficiency
[16]. Moreover, the dynamic nature of DyNN can be exploited
to achieve a trade-off between model performance and in-
ference delay. Specifically, when the task size is small, the
inference delay is comparable to the transmission and compu-
tation delay, and then DyNN can reduce the inference delay
by dynamically scaling down the depth and width of the NN.
Conversely, when the task size is large, the inference delay has
less impact on the service delay, and DyNN can obtain a high-
performance resource allocation model for inference by using
a deeper and wider NN architecture in that case. DyNN has
great potential to be used in wireless network management,
especially when tasks have various features and some of them
are extremely delay-sensitive [1]. Although DyNN has many
advantages, the dynamic nature of DyNN requires that the
different sub-NNs in it should all have acceptable inference
performance. Therefore, all these sub-NNs should be fully
trained instead of only requiring end-to-end optimization for a
single model as in traditional static NNs, making the training

of DyNNs more challenging. Thus, the training method should
also be optimized to accelerate the training speed and reduce
the costs of implementing the DyNN.

In this paper, the DyNN is used to manage the resource
in MEC for supporting tasks with different sizes and delay
requirements. In addition, we propose a new DyNN training
method in order to improve training efficiency. Specifically,
we first train the neural network with the biggest size and
then gradually train the smaller sub-NNs in the DyNN until
all blocks of DyNN are trained. Thus, the training cost can
be reduced greatly than the traditional training method. The
main contribution of this paper is as follows.

1) In delay-sensitive MEC networks, we formulate the
resource allocation and offloading problem considering
inference delay. To solve the problem, we designed an
efficient dynamic neural network whose architecture can
be dynamically changed according to the task character-
istics, effectively balancing inference delay and model
performance.

2) In order to reduce the deployment cost of the DyNN
model, we also propose a new DyNN training method,
which first trains the largest architecture of DyNN, and
then gradually trains the smaller sub-NNs in DyNN
until all blocks of DyNN are trained. Compared with
traditional training methods, this method can shorten the
training time significantly.

3) We design a new loss function to train DyNN based on
the optimization objective of MEC networks, thereby
eliminating the need for labels and achieving unsuper-
vised learning, which further enhances the practicality
of the algorithm.

4) Through simulation, we demonstrate the performance
benefits of the proposed algorithm across various as-
pects. Compared with the benchmark methods, the pro-
posed algorithm greatly reduces the service delay under
different network conditions, thus improving service
quality.

The remainder of the paper is organized as follows. In
Section II, related work is presented. The system model and
problem formulation are discussed in Section III. We propose
a DyNN-based resource management algorithm to solve the
problem in Section IV followed by the extensive simulation
results presented in Section V. Finally, Section VI concludes
this paper.

II. RELATED WORK

By deploying computing resources at the network edge,
MEC enhances the quality of service for mobile users. In this
section, we extensively explore the use of DL in MEC systems.

Reducing processing delay and energy consumption to
improve the quality of service is the main optimization goal for
MEC systems. To minimize the normalized energy consump-
tion, a DL architecture is proposed in [17] that uses a digital
twin of the real network to train DL algorithms offline on a
central server. Considering the high variability of delay and the
trust risk in cooperation, an online learning-aided cooperative
offloading mechanism is proposed to accommodate delay vari-
ations, where social trust is used to organize the computation
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offloading [18]. In addition, considering the distributed de-
ployment requirements in practical situations, a decentralized
computation offloading algorithm is proposed to minimize
the average delay of a pervasive edge computing network
based on game theory and adversarial imitation learning [19].
All the above work shows that DL can significantly improve
the performance of MEC networks. However, the deployment
and implementation overheads of these DL schemes are not
considered.

Among various DL categories, deep reinforcement learning
is widely used in MEC because it can effectively cope with
environmental changes and does not require labels during
training. For the multi-user multi-edge node computation
offloading problem, a model-free reinforcement learning of-
floading mechanism is proposed based on the unknown payoff
game framework [20]. For the resource allocation problem
of collaborative MEC networks, an intelligent resource allo-
cation algorithm based on multi-task reinforcement learning
is proposed in [21] to learn the network environment in a
self-supervised learning manner. Similarly, although deep re-
inforcement learning can cope with complex dynamic network
environments, the execution cost of the algorithms remains a
pressing issue.

The work in [1] presented preliminary results, focusing on
the trade-off between inference delay and transmission delay.
To address the operational process of the task more effectively,
a new DyNN is proposed to optimize computing resources
while considering the overheads from inference, transmission,
and operations. It is worth noting that there has been work
applying DyNN to wireless communications, but it is aimed
at MIMO detection, not delay-sensitive systems such as MEC
[22].

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Task Processing Delay

Consider an MEC system with N users and one server as
shown in Fig. 1. We assume that at the beginning of each
delay slot. User i generates a task, denoted by oi, with the
size of si and different urgency. Since all tasks are assumed
as extremely delay-sensitive, all tasks should be processed
before the deadline di. In addition, user i is equipped with
a central processing unit (CPU) with a different computing
frequency f loc

i , while all users’ CPU frequency is much lower
than that of the server’s f ser. The task can be processed locally
or in the server by offloading. Inspired by the success of
the 5G network of orthogonal frequency division multiplexing
(OFDM), we assume that the OFDM is used for task uploading
and downloading and the total bandwidth resource for all users
in the system is limited with the size of bmax, each user can be
allocated with different bandwidth on the demand of the size
and urgency of the task. Similar to [23], the transmission rate
for user i is mainly determined by the allocated bandwidth
and the distance between users and server, which are various
for different users. As a consequence, if user i determines to
offload the task to the server, the transmission delay Ttra,i is

T tra
i =

si

bilog2
(
1 + g0(l0/li)

hp
biσ0

) , (1)

where bi is the bandwidth allocated to user i, g0 is the path
loss constant, h is the path loss exponent, l0 is the reference
distance, li is the distance between user i and the server, p
and σ0 are the power of transmitting and noise. In order to
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Fig. 1. MEC system with delay-sensitive tasks.

enable the server can process multiple tasks from different
users simultaneously, the computing resource, that is, the CPU
frequency of the server is assumed to be allocatable. Therefore,
if user i offloads the task to the server, and f ser

i computing
resource is allocated to it, the server processing delay is

T com
i =

cisi
f ser
i

, (2)

where ci (in CPU cycles/bit) is the workload determined by
the task complexity. Assuming when part of the computing
resource is allocated to a specific user it is reserved, thus the
queuing delay is ignored in this paper, and the total delay of
offloading is

T edge
i = T tra

i + T com
i . (3)

However, since the computing resources of the server are
limited, offloading all tasks to the server may defect the
computing efficiency of the server and increase the probability
of missing the deadline. As a result, users can also process
tasks locally when there are few computing resources in the
server or the distance between users and the server is too long
that the transmission delay is large. Since the transmission
delay is zero when processing locally, the delay of local
computing is

T loc
i =

cisi
f loc
i

. (4)

B. Energy Consumption Model

Besides the task processing delay, energy consumption is
an important factor, since the batteries of IoT devices are
energy-limited. According to [23], the energy consumed by
the edge server is ignored since it can always be charged by
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wire. Therefore, if users offload tasks to the server, the energy
consumption of transmission is

Eedge
i = pT tra

i . (5)

Otherwise, the task is processed locally, and the energy
consumption is [24]

Eloc
i = µcisi(f

loc
i )2, (6)

where µ is a constant value of energy efficiency. Considering
the information of task, device, and location together, we
define the feature vector ui of user i as

{
si, ci, di, li, f

loc
i

}
,

thus the set of user features can be expressed as

U = {u1, u2, . . . , uN} . (7)

C. Inference Delay Model

The algorithm inference delay, which is often overlooked, is
a critical factor in delay-sensitive scenarios. It is well known
that convex optimization relies on multiple iterations to get
the solution to the problem. In each iteration, there are a
large number of addition and multiplication and differentiation
calculations. As a result, the inference delay of convex opti-
mization is huge and cannot be simply ignored in extremely
delay-sensitive scenarios. Moreover, it is challenging to ad-
just the inference delay of convex optimization on demand,
since its computational complexity depends on the algorithm
architecture. The inference delay of the DL-based method is
determined by the depth and width of the NN architecture.
For example, a multilayer perceptron (MLP) requires multiple
matrix multiplications, the number of which is the depth of
NN and the size of the matrix is equal to the width of NN
[25]. Therefore, the inference delay of the DL-based method
can be adjusted by changing the depth and width of NN. In
this paper, we focus on the inference delay of the DL-based
method. To accurately represent the amount of operations,
we use Multiply-Accumulate Operations (MACs) to measure
the number of model operations [26], and the computational
complexity of the i-th layer in NN is given by

Mi = ζDinDout + ι, (8)

where Din and Dout denote the input and output dimensions,
respectively, and the coefficients ζ and bias ι are determined
by the structure of the NN. Therefore, the inference delay of
an MLP can be calculated as

TMLP = λ
∑
i

ηi
Mi

f
, (9)

where ηi is the binary value that controls whether the i-th layer
is used or not, and ηi equals 1 means that the corresponding
layer is executed, otherwise it is not. f is the CPU frequency
of the processing device, λ is the computational efficiency
factor, which is determined by the NN implementation and
CPU architecture. Obviously, the inference delay of NN can
be adjusted by changing the binary value η.

In this paper, not only is the depth of the NN changeable,
but the width can also be adjusted as needed. Unlike the simple
serially connected structure, we use a modular architecture to

design the NN [27], the main part of which can be viewed as
a parallel connection of many simple modules. Therefore, the
width of the NN can be adjusted by changing the number of
modules connected in parallel, and the total inference delay is

T infer =
∑
j

aiT
MLP
j , (10)

where aj is the binary value that controls whether the j-th
module is used or not, TMLP

j represents the inference delay
of the j-th MLP.

D. Problem Formulation

We formulate an optimization problem that determines
whether computing locally or at the server, and manage the
bandwidth and computing resources as F(·|θ) with trainable
parameters θ. The objective is to jointly minimize the service
delay of tasks, the deadline miss ratio, and the task processing
energy consumption. The problem is formulated as follows

min
x,b,f ,η,a

N∑
i=1

α
(
T infer + xiT

edge
i + (1− xi)T

loc
i

)
+ β

(
xiE

edge
i + (1− xi)E

loc
i

)
+ δI

(
T infer + xiT

edge
i + (1− xi)T

loc
i > di

)
,

(11a)
s.t. xi ∈ {0, 1},∀i ∈ {1, 2, · · · , N} (11b)

ηi ∈ {0, 1},∀i ∈ {1, 2, · · · , L} (11c)

1 ≤
L∑

i=1

ηi ≤ L, (11d)

ai ∈ {0, 1},∀i ∈ {1, 2, · · · ,K} (11e)

1 ≤
K∑
i=1

ai ≤ K, (11f)

x,b, f = F(·|η, θ), (11g)
bi ≥ 0,∀i ∈ {1, 2, · · · , N}, (11h)
N∑
i=1

bi ≤ bmax, (11i)

fi ≥ 0,∀i ∈ {1, 2, · · · , N} (11j)
N∑
i=1

fi ≤ f ser, (11k)

where α, β, and δ are weighting constants for delay, deadline
miss ratio, and energy, respectively. The purpose of combining
delay and energy weighting into one equation is to get an
optimized solution for overall performance [28]. L is the
maximum depth, K is the maximum width, and I(·) is an
indicator function when the input is true it equals 1 otherwise
0. The first part in Equation (11a) represents the processing
delay of tasks consisting of the inference delay caused by the
algorithm and the task computing delay. Due to the Constraint
(11b), the xi is either 0 or 1 that the task can only be processed
either locally or at the server. The second part in Equation
(11a) is the energy consumption when users process the task
locally, and the third part aims to minimize the deadline miss
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ratio for all tasks. Constraints (11c) and (11d) are used to
adjust the depth of the NN, and when ηi is equal to 0, the
i-th layer is skipped during the inference process. Similarly,
constraints (11e) and (11f) are used to adjust the depth of
the NN. Obviously, both the width and depth of NN must
be greater than 0, otherwise, it will not work, so constraints
(11d) and (11f) are used. Since the architecture of the NN
has not yet been described in detail, only an overview of the
inference delay is given here, and we will analyze the inference
delay further in the next section. Since the NN is used to
determine whether to offload and to manage the bandwidth and
computing resources, the Constraint (11g) is used to couple
the value η, θ and x,b, f . Constraints (11h)-(11k) are used
to guarantee the resources allocated to each user performing
the task at the server are larger than 0, and the total allocated
resources do not exceed the resource budget.

IV. DYNN-BASED APPROACH FOR MEC

The representational power of deep neural network models
is limited by the number of parameters. High-performance
models are computationally expensive, which is unaccept-
able in delay-sensitive communication systems. Conditional
computation, activating specific model parts based on sample
characteristics, improves model capacity. Mixture of experts
(MoE)-based DyNNs enhance performance by dynamically
determining expert combinations using gating networks [29].
However, MoE lacks the ability to adjust computational com-
plexity as needed. To address this issue, we propose an MoE-
based model that allocates bandwidth and computing resources
to users, and employs reinforcement learning (RL) for task
scheduling. Advanced hyperparameter selection techniques are
combined to balance model performance and inference delay.
Additionally, we employ an efficient model training method to
reduce deployment costs. In general, the scheme we designed
consists of three parts, which are resource allocation model,
scheduling model and policy model. In the actual deployment,
these three models need to be connected in series to exercise
the functions. The scheduling model outputs an offloading
decision x, which the policy model uses to determine η and a
for adjusting the allocation model. Ultimately, the allocation
model generates b and f , completing the MEC system’s
resource management.

It should be noted that although the dynamic nature of
DyNN allows adaptive adjustment and enhanced flexibility, it
may also increase training complexity and potential instability,
thereby affecting the performance and generalization of the
model. Although these potential problems are not reflected in
the issues addressed in this paper, they should not be ignored.

A. MoE-based Resource Allocation Model

Model architecture. With sparse gates [29], we design a
DyNN for efficient resource allocation and obtain multiple
resource allocation schemes through a single model. The
architecture of the allocation model is shown in Fig 2(a).
The main body of the model is an MoE layer consisting
of multiple experts and a gating network. Each expert is
represented by a neural network with the same structure

but separate parameters. The trainable gating network that
controls which experts are executed based on the input. This
allows for a dynamic allocation of resources that adapts to the
input data, making computations more efficient and improving
overall performance. Suppose we have user information that
needs to be processed, and as this information is fed into the
model, the gating network analyzes the input and determines
which experts should be activated. These selected experts
then perform computations on the input, generating individual
outputs that are later combined to produce the final output of
the MoE layer. The key advantage of this approach is that it
allows for a flexible and adaptable resource allocation strategy
that changes depending on the input data. By leveraging sparse
gates, our model can focus computational resources only
on the necessary experts, reducing unnecessary computations
and improving efficiency. Since the experts have the same
structure, they have same input and output dimensions. When
the input information x is given, we denote the output of the
i-th expert as Ei(x). When the number of experts is M , the
output of the gating network is a sparse M -dimensional vector
G(x), so the output y of the MoE layer can be expressed as

y =

M∑
i=1

G(x)iEi(x), (12)

where G(x)i is the weights for expert i. After getting G(x),
only the experts with non-zero weights need to be computed,
and thus the computational efficiency is improved. To imple-
ment the sparsity computation, the output of the MoE layer is
given as

G(x) = FSmax(TopK(H(x), k)), (13)

where

FSmax(zi) =
zi∑C

c=1 e
zc

(14)

denotes the normalized exponential function, C is the output
dimension,

TopK(n, k)i =

{
ni if ni is in the top k elements of n.
−∞ otherwise.

(15)

is used to extract the largest k elements of the vector, which
keeps only the largest k gating values and sets the rest n-k
gating values to negative infinity, so that these weights are zero
after the operation of FSmax. H(x) is the user feature function.
In order to balance the weights of the experts to make each
expert fully trained, a noise term is added to the input features,
and the noise size is controlled by the trainable noise matrix
Wnoise.

H(x)i = (x ·Wg)i +Φ · FSplus ((x ·Wnoise)i) , (16)

where Wg is the trainable weight matrix, Φ is the standard
normal distribution,

FSplus(x) = ln (1 + ex) . (17)

Training method. Fig 2(b) demonstrates the training process
of the proposed dynamic neural model. Since the energy
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Fig. 2. Overview of the proposed allocation model.

consumption of task processing at the user side is independent
of the resource allocation scheme, the transmission energy
consumption is proportional to the transmission delay, we
optimize the parameters of the allocation model using only
delay-related metrics. In order to make the model accomplish
the allocation of transmission bandwidth and CPU frequency
simultaneously, we use the same input data for two parameter
updates during training. Specifically, the user information is
first propagated forward according to the path on the left,
computing in the order from the MoE layer to the output layer
A to obtain the bandwidth allocation vector b, expressed as

b = FSmax(FA
Line(y)), (18)

where FA
Line(·) is the linear function of the output layer A and

y is the output of the MoE layer. After obtaining b, the task
transmission delay for user i can be calculated according to the
Equation (1). In order to meet the deadline while optimizing
the delay and energy, we define an importance weight in
training

wi = γ
cνi s

ν
i

di
, (19)

where γ is the importance proportionality constant, cνi and sνi
denote the normalized workload and task size, respectively.
Equation (19) indicates that tasks with more stringent delay

requirements are significantly important. In addition, the pro-
cessing tasks with higher workloads and larger data volume are
challenging to meet the deadline, so we assume that their im-
portance increases accordingly. Then, we weight the delay by
importance to obtain the average weighted transmission delay
T tra
w =

∑N
i=1 wiT

tra
i . Since bi are all continuous variables,

T tra
w calculated from them can be directly backpropagated

[30]. Therefore, we use T tra
w as the loss function to train the

model. After completing the update of the model parameters
for bandwidth allocation, we train the model in the same way
for the computing resource allocation. Similarly, the frequency
allocation vector f is denoted by

f = FSmax(FB
Line(y)), (20)

where FB
Line(·) is the linear function of the output layer B.

Based on f , the average weighted processing delay T com
w can

be calculated to complete the second parameter update. The
model is trained according to the above process until con-
vergence. The inference efficiency is significantly improved
because the output layers account for a lower proportion of
the computation.

B. Progressive Shrinking Training for Allocation Model

In the practical deployment scenario, due to the limitation of
hardware efficiency, the computation cost of the algorithm is
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an important factor affecting the quality of service. Therefore,
to adapt to different hardware platforms and user demands,
the computational complexity of model should be adjusted as
needed to balance inference performance and computational
overhead. For the proposed allocation model, the main com-
putational complexity depends on the width of MoE k (number
of activated experts) and the depth of expert modules l (number
of layers in experts). Therefore, we dynamically adjust them
in the inference process. However, it is usually not feasible
to directly change the model size during inference operations,
due to significant performance loss. Since when expanding
the model size, the added network structure has not been
trained, it does not have inference ability; when the model
size is reduced, the abandoned network structure changes the
model mapping function, which will also lead to great damage
to performance. Therefore, large and sub-models need to be
trained to support the dynamic inference.

To obtain trained sub-networks, the traditional approach is
to optimize all the models from scratch [31], in which the
gradients of all the models need to be computed to update the
parameters. Obviously, the training overhead of this approach
is huge and linearly related to the number of sub-networks.
To reduce the training overhead, we use an advanced training
method, namely progressive shrinking [32]. Specifically, we
first train the largest neural network, and then sequentially
shrink the width and depth to further train the sub-networks.
The small network is initialized with the trained parameters
of the large network during the progressive shrinking process,
rather than being trained from scratch. Since the small network
inherits the weights learned by the large network, the training
efficiency can be significantly improved.

…

Expert 1

Expert 2

Expert n

…

Shrink the width

… …

Expert

MoE layer

Expert 1

Expert 2

Expert n

…

Expert 1

Expert 2

Expert n

…

Shrink the depth

…

Fig. 3. Progressive Shrinking.

C. Joint Optimization of Task Scheduling and Model Adjust-
ment

After training the allocation model, it becomes necessary
to select an appropriate size for the NN used in resource
allocation based on the requirements of the given scenario.
The computational complexity and inference performance of
the model are determined jointly by the hyperparameters k and
l. Drawing inspiration from [32], we propose the construction

of a policy network aimed at predicting the optimal model
size. However, it is not feasible to independently train the
policy network solely based on the performance of allocation
models with varying sizes. This is due to the fact that the
system’s overall performance is also influenced by scheduling
decisions.

Specifically, in the context of resource allocation problems,
once task scheduling decisions have been made, we can deter-
mine the optimal size for the allocation model by considering
information about the tasks that have been offloaded to the
server. As locally executed tasks do not require transmission
and computing resources, they do not affect the selection of
the model size. Similarly, when it comes to task scheduling
problems, the optimal scheduling scheme differs depending on
the size of the allocation model being used. Under identical
conditions, using a resource allocation algorithm that exhibits
superior performance leads to the scheduling model offloading
more tasks. Consequently, optimizing the offloading decision
and the model size must be done jointly. However, both of
these problems involve discrete and non-microscopic decision
processes, rendering them challenging to solve using conven-
tional optimization methods. Furthermore, the offloading de-
cision is contingent upon highly dynamic task characteristics,
making it difficult to obtain training labels. To address these
difficulties, we employ a reinforcement learning approach to
train the scheduling model while simultaneously optimizing
the policy model through supervised learning.

Specifically, we train the scheduling model using a policy
gradient approach, where the state information s is the user
feature vector,

s = {u1, u2, . . . , uN} , (21)

the action is the offloading decision, which is denoted as

a = {p1, p2, . . . , pN} , (22)

where p1 indicates the probability of offloading the task o1.
Typically, the training of reinforcement learning requires a lot
of exploration to find the best strategy. For the task scheduling
problem, since each task has two decision behaviors, the action
space is 2N , and the training overhead is intolerable in the case
of a large number of tasks. To accelerate the convergence of
the model, for the task oi, we define the reward as

Ri =

{
(Cloc

i − Cedge
i )pi, if offloading;

(Cedge
i − Cloc,

i )pi, otherwise,
(23)

where Cloc
i denotes the cost of executing task i locally, Cedge

i

denotes the execution cost of offloading task i to the edge
server. Equation (23) shows that the reward value is positive
when the offloading decision made is better than the opposite
decision, thus increasing the probability of the scheduling net-
work outputting the action. Conversely, when the decision is
inferior to the opposite decision, the reward value is negative,
thus decreasing the probability of the action. The execution
cost includes the weighted total delay and energy consumption,
which can be expressed as

Cloc
i = α(wi

(
T infer
l + T loc

i

)
) + βEloc, (24)
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Cedge
i = α(wi

(
T infer
e + T edge

i

)
) + βEedge

i , (25)

where T infer
l denotes the inference delay for local execution,

which is generated by the scheduling model, and T infer
e

denotes the inference delay in the offloading case, which is
the sum of the inference delays of the scheduling, policy, and
allocation models. To obtain the best system performance, the
average reward R(A) = 1

N

∑N
i=1 Ri for all tasks is used as

the overall reward to update the parameters of the scheduling
model. Then, the gradient of the scheduling network can be
expressed as

∇θµJ =
1

N

N∑
i=1

R(a)∇θµµ (s | θµ)|si
, (26)

where N is the number of training samples. Each interaction
of the scheduling model with the MEC system generates a
set of training samples. µ (s | θµ) denotes the strategy of the
scheduling model, which is the task offloading probability of
each user, i.e., µ (s | θµ) = {p1, p2, . . . , pN}. θµ is the train-
able parameter. Then, the model parameters can be updated
according to the following formula,

θµ′ = θµ + lr∇θµJ, (27)

where θµ′ is the updated parameters and lr is the learning rate.
The policy network determines the number of active experts

k in the specified model and the number of layers executed in
each expert l. If l is less than the total number of layers in the
expert, only the first l layers need to be computed. Note that
resource allocation is not required for tasks executed locally,
so only tasks offloaded to the server need to be considered.
The optimization goal of the policy network is to balance
the computational complexity of the model and the inference
performance to obtain the lowest total service delay. Therefore,
we define the training label of the policy network as

PLabel = argmin
k,l

Cedge, (28)

where Cedge = 1
N

∑N
i=1 C

edge
i denotes the average cost of the

offloaded tasks. Then, the loss function of the policy network
can be represented as

LPolicy = ∥PLabel − Pout∥2 , (29)

where Pout denotes the output of the policy network.
In equation (25), the inference delay T infer

e depends on
the prediction result of the policy network, and the input of
the policy network depends on the offloading decision given
by the scheduling model. The parameter optimization process
of the above two models is coupled. In the initial stage,
neither the scheduling model nor the policy model can give
valid decisions, which will make the model training difficult.
This is because the parameter updates of the policy model
cause changes in the environment information, which makes
it difficult for the model to converge. For the policy model, the
change of the scheduling strategy produces different sample
labels, which makes the optimization direction of the model
oscillate and thus hinders the training. To solve this problem,
we first pre-train the policy model with all tasks offloaded,
then optimize the scheduling model based on the pre-trained

policy model, and further train the policy model. The specific
training process is shown in Algorithm 1.

Algorithm 1 Joint Training of Policy Model and Scheduling
Model

1: Train the allocation model and fix the parameter
2: Pre-train the policy model
3: Randomly initialize policy model with parameter ω
4: Generate user information samples and get the policy labels by

Eq. (28)
5: Update ω to minimize LPolicy

6: Obtain the pre-trained parameter ω◦ ← ω
7: RL-based joint training
8: Randomly initialize scheduling model with parameter θµ

9: Initialize policy model with parameter ω◦

10: for episode = 1,. . ., Emax do
11: Generate user information samples as state s
12: Obtain offloading decision A by Scheduling Model and get

training samples accordingly
13: Get k, l by policy model and allocate resources by allocation

model
14: Get reward according to Eq. (23)
15: Update ω to minimize LPolicy

16: Update θµ to maximize R
17: end for
18: return the trained parameters of policy model and scheduling

model {ω∗ ←− ω}, {θµ∗ ←− θµ}

D. Computational Complexity Analysis of NNs with Different
Sizes

Forward inference in a NN is the process of deriving an
output from the input by performing a finite number of matrix
operations, which depends on the network structure. The total
number of operations in any NN model is the sum of the
operations in each subpart. The proposed scheme aims to
dynamically adjust the computational load of the NN by modi-
fying the network structure involved in inference. Specifically,
we enable elastic width and depth by adjusting the number of
activated expert modules in the MoE and the number of layers
in each expert. Thus, the amount of operations of all expert
modules in the inference process can be expressed as

MMoE =

K∑
i=1

aiMept
i , (30)

where MMoE denotes the total MACs of the experts during
the inference process, Mept

i is the MACs of the i-th expert.
Since the structure of each expert in MoE is the same, they
have the same MACs, which is denoted as Mept. Therefore,
Equation (30) can be converted to

MMoE = kMept, (31)

where k denotes the number of experts activated. For each
expert, since we set it as a serial network structure, its
computation is the sum of the computations of the used layers.
After obtaining the number of network layers l used by the
policy model, only the first l layers of the expert need to be
executed, i.e., the binary value η can be expressed as

ηi =

{
1, i ≤ l;
0, i > l.

(32)
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Therefore, the computation of an expert can be expressed as

Mept =

L∑
i=1

Mlayer
i , (33)

where Mlayer
i represents the MACs of the i-th layer. From

the above analysis, it can be seen that the operation amount
of MoE is roughly linear with its width and depth.

In addition to the above structurally adjustable NNs, the
proposed scheme includes a portion of fixed-architecture NNs
with a constant computational complexity. Although these
NNs cannot be adjusted on-demand, they have less impact on
the system performance because of their small computation.
Considering the inference delay generated by these NNs, we
give the expressions for T infer

l and T infer
e

T infer
l = λ

MSced

f
, (34)

T infer
e = λ

MSced +MPoli +MAlloc

f
, (35)

where MSced is the MACs of scheduling model, MPoli is
the MACs of policy model, MAlloc is the MACs of the
allocation model, including both MMoE and the output layer
computation amount Mout.

V. SIMULATION RESULTS

In this section, to demonstrate the performance of the
proposed algorithm and its ability to adapt to different sit-
uations, we evaluate it in two cases. We first evaluate the
performance of the proposed DyNN-based resource allocation
method in the case of users without computing power. All
tasks in this case need to be transmitted to the server for
processing and thus do not require the scheduling model for
offloading decisions. In addition, the users in this case only
consume transmission energy, which is much smaller than
the computational energy of the tasks, so we only focus on
the delay-related metrics. Then, we comprehensively evaluate
the proposed joint resource allocation and task scheduling
algorithm in the case where the user has computing power.

For the DyNN, we set each expert as an MLP with a
maximum depth of L and the number of neurons per layer
is 64. Both the scheduling model and the policy model are
MLPs with one hidden layer, which contains 32 neurons. In
addition, each layer in the above networks is activated by
the LeakyReLU function. The dynamic and fixed amount of
computations and parameters of NN in the proposed algorithm
are listed in Table I.

TABLE I
AMOUNT OF COMPUTATIONS AND PARAMETERS

Dynamic MACs Fix MACs Dynamic Param Fix Param
5.126M 0.302M 87.04K 7.291K

In simulations, the user information is assumed to be
uniformly distributed. Specifically, the data size si ∼
Unif [0, 2savg] and task complexity ci ∼ Unif [0, 2cavg],
where savg = 1 kbits [23], cavg = 797.5 cycles/bit [33],

and the task deadline di is chosen randomly from the in-
terval of [0, 160]ms. In addition, the user computing power
floc,i ∼ Unif [0.01, 0.15]GHz in the second case. Since we
are concerned with a delay-sensitive system, α is set to 1 and
β is set to 0.1. The values of other simulation parameters are
shown in Table II.

TABLE II
SIMULATION PARAMETERS

Parameters Values
Number of users N 30

Bandwidth of wireless channel bmax 0.5MHz
Computation capacity of sever fser 2.5GHz
Computational efficiency factor λ 1

Distance between user i and the server li [5, 500]m
Transmission Power p 0.1w

Noise Power σ0 -174dBm/Hz
Path-loss constant g0 -40dB
Path-loss exponent h 2.8

Energy efficiency constant 10−20

Importance proportionality constant γ 60
Maximum width of MoE K 10
Maximum depth of expert L 3

Learning rate of allocation model 0.001
Learning rate of policy model 0.0001

Learning rate of scheduling model 0.002

A. Performance Evaluation of Resource Allocation

(a) Excluding inference delay (b) Including inference delay

Fig. 4. Comparison of allocation performance for models of different sizes.
(a): The performance of the model itself, i.e., the weighted delay without
considering the inference process. (b): The deployment performance of the
model, i.e., the total weighted delay considering the inference process.

To illustrate the necessity of choosing the appropriate model
size, Fig. 4 shows the performance of different models. Fig.
4(a) shows the inference performance versus model size. We
can observe that, as the width and depth increase, the weighted
delay decreases, i.e., the allocation performance of the model
improves. However, the performance improvement comes with
the expense of increased inference cost. Fig. 4(b) shows the
total weighted delay considering the inference cost, and the
largest model does not achieve optimal performance because
of its higher inference cost, thus it is necessary to rationalize
the model size.

In the case of users without computing power, we compare
the proposed resource allocation algorithm PolicyMoE with
the following baseline algorithms:
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(a) (b) (c) (d)

Fig. 5. Average execution delay of tasks in the case of users without computing power

(a) (b) (c) (d)

Fig. 6. Deadline miss ratio in the case of users without computing power

• Fix width MoE: The allocation model uses a fixed
width MoE for inference, i.e., the policy model only
adjusts the depth.

• Fix depth MoE: The allocation model uses a fixed
depth MoE for inference, i.e., the policy model only
adjusts the width.

• Fix MoE: The allocation model uses a fixed width and
depth MoE for inference, i.e., it does not use the policy
model to adjust the size.

• Static model: A conventional static neural network is
used as the allocation model with the same structure as
the deepest expert module and the number of neurons in
the hidden layer is 384.

• GA: Genetic algorithm (GA) is used for transmission
and computing resource allocation. GA generates a large
population, and each person in the population includes the
amount of resources allocated to each user. The fitness of
an individual is set as the objective function defined in
III.D. In each iteration, individuals with higher fitness are
retained and other individuals with lower fitness are dis-
carded. The crossover operator and mutation operator are
used to generate new individuals, and uniform crossover
is used as the crossover operator. The crossover rate of
the GA is set to 0.2, which decays to one-half of the
original value every 25 iterations, and the mutation rate
is set to 0.1, which decays to one-quarter of the original
value every 25 iterations. The population size is set to 6
times the number of tasks. The rotation method is used for
individual selection so that individuals with higher fitness
have a greater chance of being retained. Since the GA and
the NN-based algorithm have huge differences in delay-
related indicators, for the convenience of presentation,
we use the additional coordinates on the right side in
the result figures of delay and miss ratio to represent the
values of the GA.

Note that among the comparison schemes, both Fix MoE

and Static model cannot adjust their computations, while Fix
width MoE and Fix depth MoE have the ability to adjust.

Fig. 5 shows the average execution delay of different con-
ditions. It can be observed that the policy MoE is consistently
superior to the comparison scheme under different scenarios.
The various MoE-based allocation algorithms outperform the
static model because the sparse gate structure and multi-task
learning of MoE enhance the computational efficiency. Since
the fixed MoE cannot adjust the computation on demand, there
is still a large computational redundancy and the performance
is not as good as that of the remaining MoE schemes. The
policy MoE has the largest tuning range and therefore achieves
optimal performance. Compared with NN-based schemes, the
performance of GA changes in the same trend with different
parameters. However, because the iteration process of GA
is very time-consuming, its total delay reaches the second
level, which is dozens or even hundreds of times that of other
schemes.

Fig. 5(a) illustrates that the delay increases with the amount
of data, which is due to the fact that the transmission delay
and computation delay are proportional to the amount of data.
Since the computation delay is proportional to the task com-
plexity, Fig. 5(b) demonstrates a similar result. Furthermore,
it can be observed that the performance advantage of the
policy MoE in Fig. 5(a) and 5(b) decreases slightly with
increasing delay. This is because the policy MoE improves
performance by flexibly adjusting the computational volume,
i.e., choosing a proper size so as to reduce the inference delay
with less loss of accuracy. The increase in the amount of data
and task complexity leads to a decrease in the proportion of
inference delay and makes the policy model tend to execute
more modules to guarantee the inference performance, thus
reducing the gap with the fixed model.

Fig. 5(c) shows that the delay increases with the number
of tasks and the performance advantage of the policy MoE
increases as well. For a given amount of communication and
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computational resources in the network, more tasks mean
fewer resources available for each task, and thus the service
delay increases. Moreover, the increase in the number of tasks
increases the dimensions of the model, which increases its
computational volume and hence the inference delay. There-
fore, the computational redundancy of various comparison
algorithms increases, which makes the performance advantage
of policy MoE more prominent.

Fig. 5(d) shows that the delay decreases with the increase
in server power and the performance advantage of policy MoE
decreases. With the same task characteristics, the increase in
server computing power reduces the computational delay of
the task and hence the service delay. In addition, since the
model is deployed on the server for execution, the increase
in server computing power decreases the inference delay,
thus decreasing its proportion of the total delay, and thus
the performance advantage of MoE. If the server has enough
arithmetic power that the inference delay can be ignored, the
delay will depend only on the inference performance of the
model.

Fig. 6 shows the deadline miss ratio under different condi-
tions. Similarly, it can be seen that the policy MoE outperforms
the various comparison schemes. Since the deadline miss ratio
is positively correlated with the delay, the trend in Fig. 6
is similar to that of Fig. 5. Moreover, it can be seen that
the performance advantage of policy MoE in Fig. 6 is more
pronounced corresponding to the low delay case in Fig. 5. This
is because with low delay, most tasks can be completed within
the deadline and the overrun delay for failed tasks is small,
so a small reduction in delay can significantly decrease the
deadline miss ratio. Since the large delay of GA far exceeds
the tolerance of the delay-sensitive tasks of concern (the upper
limit of the deadline is no more than 1 s), its miss ratio has
reached 100%.

B. Performance Evaluation of Joint Resource Allocation and
Task Scheduling

In the case of users having computing power, we compare
the proposed joint resource allocation task scheduling algo-
rithm Policy MoE(RL) (PMRL) with the baseline algorithm
using different scheduling approaches as follows:

• RL: Joint optimal resource allocation and RL-based task
scheduling.

• Rand: Each user randomly chooses offloading or local
execution with equal probability.

• Local execution: Each user executes the task with the
full local computing power, thus eliminating the need for
task scheduling and resource allocation.

• GA: GA is used for joint task scheduling and resource
allocation. As the complexity of the problem increases,
we change the decay interval of the crossover rate and
mutation rate to 40 to allow the algorithm to explore
more fully in the solution space. Other settings remain
unchanged.

Fig. 7 shows the average execution delay of different
conditions. It can be seen that PMRL consistently outperforms
the comparison schemes under different conditions. In the

case of using the same offloading strategy, the performance
comparison results for the various algorithms are the same as
the conclusions obtained in the previous subsection, because
the performance difference at this point depends only on
the allocation algorithm. For the same allocation algorithm,
the performance using the RL-based scheduling scheme is
significantly better than the random scheduling method. This
is because RL is able to optimize strategies based on environ-
mental information, thus significantly improving the utilization
of computing resources. Similar to the results shown in V.A,
the total delay of GA reaches the second level due to the
excessive computation, and the convergence slows down due
to the increase in problem complexity, causing the delay of
GA to further increase compared to the case of V.A.

Fig. 7(a) and Fig. 7(b) show that the delay increases with
the data size and task complexity, which is the same as A. In
the case of low delay, the solution with a random offloading
strategy does not perform as well as the local execution. This is
because these schemes cannot maximize the utilization of the
computing power of the system according to the task features.
The inference delay generated by them in allocating resources
accounts for a larger proportion of the total delay, and thus the
performance is poor. The local execution scheme, on the other
hand, can not utilize the server’s computing power, but does
not generate inference delay, so the performance is better. The
RL-based offloading strategy can maximize the utilization of
the system’s computing power, and thus outperforms the local
execution scheme.

Fig. 7(c) shows that the delay increases with the number
of tasks for all schemes except the local execution scheme,
and the performance advantage of PMRL expands accordingly,
which is consistent with the findings obtained by Fig. 5(c). The
local execution scheme does not require the use of channel
and server resources, so the delay does not increase with
the number of tasks. Similarly, the performance of the local
execution scheme in Fig. 7(d) is independent of the server
computing power, and the rest of the schemes follow the same
trend as Fig. 5(d).

Fig. 8 evaluates the deadline miss ratio for each scheme
under different conditions. The performance comparison re-
sults are consistent with the delay for all schemes except local
execution. The performance of the local execution scheme
improves, outperforming the random offloading scheme in
most cases. This is because with the same average delay, each
user has to bear the inference delay generated by resource
allocation when using the random offloading scheme, and the
inference delay is the same for different users, which leads to
a significant increase in the miss ratio for tasks with tighter
deadlines. Therefore, local execution is a proper solution if
most of the tasks themselves require very small processing
delays. Likewise, GA has a miss rate of 100% because its
delay is far beyond the tolerance of the tasks.

Fig. 9 shows the user-side energy cost under different condi-
tions. The local execution scheme generates the largest energy
cost because it requires all users to process the tasks with their
own computing power. Unlike other metrics, the energy cost
in Fig. 9(c) is positively correlated with the number of users
since we are concerned with the total energy cost on the user
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(a) (b) (c) (d)

Fig. 7. Average execution delay of tasks in the case of users having computing power

(a) (b) (c) (d)

Fig. 8. Deadline miss ratio in the case of users having computing power

(a) (b) (c) (d)

Fig. 9. Energy cost in the case of users having computing power

side. In addition, the difference between the other schemes is
mainly determined by the number of offloaded tasks, which is
due to the fact that the transmission energy consumption of the
tasks is much greater than the computing energy consumption.
For the schemes using RL-based scheduling strategy, using
a resource allocation algorithm with better performance is
equivalent to improving the computing power of the server,
thus making the scheduling strategy tend to offload more tasks.
Therefore, the energy cost comparison results for each scheme
are the same as the delay, i.e., the scheme with lower delay
can also achieve lower energy cost. It is worth noting that for
energy consumption metrics, GA outperforms neural networks
because energy consumption has nothing to do with algorithm
execution overhead. This shows that although the traditional
algorithm has shortcomings in computational overhead and
flexibility, the quality of the given solution can be guaranteed,
and it is an effective solution without considering the algorithm
overhead.

To better show the behavior of the policy model, we further
evaluate the choice of model size. Fig. 10 shows the average
model MACs for different data amounts, and it can be seen
that the MACs of the policy MoE are positively correlated with
the data amount and significantly smaller than the fixed MoE.
This is because the delay and energy consumption increase
with the data amount, increasing the performance gap between

Fig. 10. MACs of model versus data amount

different models, and thus the performance inferiority of small
models widens. So a larger model needs to be selected to
achieve the best performance. In contrast, the fixed MoE
always uses large-scale for inference, so there is a huge
amount of computational redundancy. Further, Fig. 11 shows
the percentage of inference delay for different data volume
cases, and it can be seen that the percentage of inference delay
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Fig. 11. Percentage of inference delay versus data amount

for the static model and fixed MoE is inversely proportional
to the data volume, while the policy MoE is more stable and
always stays at a low level.

C. Training Cost Analysis

Fig. 12. Training delay of different methods

Fig. 12 shows the delay of training different MoE models
with progressive shrinkage and traditional methods. Training
full dynamic models (width and depth) and width dynamic
models using progressive shrinkage can significantly reduce
the delay, while the difference in delay for training depth
dynamics is relatively small. This is because the MoE model
has a smaller width shrinkage (one-tenth of the maximum
width) and a larger depth shrinkage (one-third of the maximum
depth), and the initial performance of the small network is
poorer when the shrinkage is larger, thus requiring a longer
training delay.

VI. CONCLUSION

In this paper, the algorithm inference delay, computing
delay, and transmission delay have been jointly optimized by
the proposed DyNN-based resource management method. In
addition, a new shrinking training method has been proposed
to reduce the training cost of DyNN. Simulation results

show that the proposed DyNN-based method outperforms
the traditional optimization algorithm and the static-NN-based
method. By applying the proposed method in the network, the
controller can balance algorithm complexity and performance,
on demand of features of tasks. In future work, we will
investigate how to use DyNN to solve the timing optimization
problem.

REFERENCES

[1] L. Ma, N. Cheng, X. Wang, R. Sun, and N. Lu, “On-Demand Resource
Management for 6G Wireless Networks Using Knowledge-Assisted
Dynamic Neural Networks,” in Proc. IEEE ICC, 2022, pp. 1–6.

[2] N. Cheng, W. Xu, W. Shi, Y. Zhou, N. Lu, H. Zhou, and X. Shen, “Air-
ground integrated mobile edge networks: Architecture, challenges, and
opportunities,” IEEE Commun. Mag., vol. 56, no. 8, pp. 26–32, 2018.

[3] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A
survey on mobile augmented reality with 5g mobile edge computing:
Architectures, applications, and technical aspects,” IEEE Commun. Sur-
veys Tuts., vol. 23, no. 2, pp. 1160–1192, 2021.

[4] T. Ma, H. Zhou, B. Qian, N. Cheng, X. Shen, X. Chen, and B. Bai,
“Uav-leo integrated backbone: A ubiquitous data collection approach for
b5g internet of remote things networks,” IEEE J. Sel. Areas Commun.,
vol. 39, no. 11, pp. 3491–3505, 2021.

[5] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. Shen, “Energy
efficient dynamic offloading in mobile edge computing for internet of
things,” IEEE Trans. Cloud Comput., vol. 9, no. 3, pp. 1050–1060, 2021.

[6] C. Zhou, W. Wu, H. He, P. Yang, F. Lyu, N. Cheng, and X. Shen, “Deep
reinforcement learning for delay-oriented iot task scheduling in sagin,”
IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 911–925, 2021.

[7] N. Cheng, H. Jingchao, Y. Zhisheng, Z. Conghao, W. Huaqing, L. Feng,
Z. Haibo, and S. Xuemin, “6g service-oriented space-air-ground inte-
grated network: A survey,” CJA, vol. 35, no. 9, pp. 1–18, 2022.

[8] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and Y. Yang,
“A game-theoretical approach for user allocation in edge computing
environment,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 3, pp.
515–529, 2020.

[9] M. R. Garey and D. S. Johnson, “Computers and intractability: A guide
to the theory of np-completeness,” W. H. Freeman & Co.: New York,
NY, USA, 1979.

[10] A. Yazar, S. Dogan-Tusha, and H. Arslan, “6g vision: An ultra-flexible
perspective,” ITU J. Future Evol. Technol., vol. 1, no. 1, pp. 121–140,
2020.

[11] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
“Space/Aerial-Assisted Computing Offloading for IoT Applications: A
Learning-Based Approach,” IEEE J. Sel. Areas Commun., vol. 37, no. 5,
pp. 1117–1129, 2019.

[12] X. Wang, L. Fu, N. Cheng, R. Sun, T. Luan, W. Quan, and K. Al-
dubaikhy, “Joint Flying Relay Location and Routing Optimization for
6G UAV–IoT Networks: A Graph Neural Network-Based Approach,”
Remote Sensing, vol. 14, no. 17, p. 4377, 2022.

[13] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11 158–11 168,
2019.

[14] J. Xu, L. Chen, and S. Ren, “Online learning for offloading and
autoscaling in energy harvesting mobile edge computing,” IEEE Trans.
Cogn. Netw., vol. 3, no. 3, pp. 361–373, 2017.

[15] X. You, Y. Huang, S. Liu, D. Wang, J. Ma, W. Xu, C. Zhang, H. Zhan,
C. Zhang, J. Zhang et al., “Toward 6G TKµ Extreme Connectiv-
ity: Architecture, Key Technologies and Experiments,” arXiv preprint
arXiv:2208.01190, 2022.

[16] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, “Dynamic
neural networks: A survey,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 44, no. 11, pp. 7436–7456, 2022.

[17] R. Dong, C. She, W. Hardjawana, Y. Li, and B. Vucetic, “Deep learning
for hybrid 5g services in mobile edge computing systems: Learn from
a digital twin,” IEEE Trans. Wireless Commun., vol. 18, no. 10, pp.
4692–4707, 2019.

[18] Y. Li, X. Wang, X. Gan, H. Jin, L. Fu, and X. Wang, “Learning-
aided computation offloading for trusted collaborative mobile edge
computing,” IEEE Trans. Mobile Comput., vol. 19, no. 12, pp. 2833–
2849, 2020.

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2023.3346824

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 27,2023 at 07:09:48 UTC from IEEE Xplore.  Restrictions apply. 



14

[19] X. Wang, Z. Ning, and S. Guo, “Multi-agent imitation learning for
pervasive edge computing: A decentralized computation offloading algo-
rithm,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 2, pp. 411–425,
2021.

[20] T. Q. Dinh, Q. D. La, T. Q. S. Quek, and H. Shin, “Learning for com-
putation offloading in mobile edge computing,” IEEE Trans. Commun.,
vol. 66, no. 12, pp. 6353–6367, 2018.

[21] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, and J. Hu, “iraf: A
deep reinforcement learning approach for collaborative mobile edge
computing iot networks,” IEEE Internet Things J., vol. 6, no. 4, pp.
7011–7024, 2019.

[22] Y. Yang, F. Gao, M. Wang, J. Xue, and Z. Xu, “Dynamic Neural Network
for MIMO Detection,” IEEE J. Sel. Areas Commun., vol. 40, no. 8, pp.
2254–2266, 2022.

[23] Y. Mao, J. Zhang, and K. B. Letaief, “Joint task offloading scheduling
and transmit power allocation for mobile-edge computing systems,” in
Proc. IEEE WCNC, 2017, pp. 1–6.

[24] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4569–4581, 2013.

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[26] M. A. Nahmias, T. F. de Lima, A. N. Tait, H.-T. Peng, B. J. Shastri,
and P. R. Prucnal, “Photonic multiply-accumulate operations for neural
networks,” IEEE J. Sel. Topics Quantum Electron., vol. 26, no. 1, pp.
1–18, 2020.

[27] S. Mittal, Y. Bengio, and G. Lajoie, “Is a modular architecture enough?”
arXiv preprint arXiv:2206.02713, 2022.

[28] J. Song, Q. Song, Y. Wang, and P. Lin, “Energy–delay tradeoff in
adaptive cooperative caching for energy-harvesting ultradense networks,”
IEEE Trans. Comput. Soc. Syst, vol. 9, no. 1, pp. 218–229, 2022.

[29] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” arXiv preprint arXiv:1701.06538, 2017.

[30] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “Graph neural networks for
scalable radio resource management: Architecture design and theoretical
analysis,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 101–115,
2021.

[31] J. Yu and T. S. Huang, “Universally slimmable networks and improved
training techniques,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
2019, pp. 1803–1811.

[32] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” arXiv preprint
arXiv:1908.09791, 2019.

[33] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in HotCloud, 2010.

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2023.3346824

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 27,2023 at 07:09:48 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Related Work
	System Model and Problem Formulation
	Task Processing Delay
	Energy Consumption Model
	Inference Delay Model
	Problem Formulation

	DyNN-based Approach for MEC
	MoE-based Resource Allocation Model
	Progressive Shrinking Training for Allocation Model
	Joint Optimization of Task Scheduling and Model Adjustment
	Computational Complexity Analysis of NNs with Different Sizes

	Simulation Results
	Performance Evaluation of Resource Allocation
	Performance Evaluation of Joint Resource Allocation and Task Scheduling
	Training Cost Analysis

	Conclusion
	References

