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Abstract—Unmanned aerial vehicles (UAVs) have gained popu-
larity due to their flexible mobility, on-demand deployment, and
ability to establish line-of-sight wireless communication. However,
existing UAV-assisted communication schemes often overlook the
critical issue of collision avoidance during UAV flight. This paper
proposes an interpretable UAV-assisted communication scheme
that addresses this challenge through decomposition into two
sub-problems. The first sub-problem involves constrained UAV
coordinates and power allocation, solved using the Dueling Dou-
ble DQN (D3QN) method. The second sub-problem deals with
constrained UAV collision avoidance and trajectory optimization,
addressed through the Monte Carlo tree search (MCTS) method.
This approach ensures reliable and efficient UAV operation. To
enhance the transparency and reliability of system decisions,
a scalable explainable artificial intelligence (XAI) framework
is proposed. The interpretability of the scheme generates ex-
plainable and trustworthy results, facilitating comprehension,
validation, and control of UAV-assisted communication solutions.
Extensive experiments demonstrate the superiority of the pro-
posed algorithm in terms of performance and generalization com-
pared to existing techniques. The proposed model improves the
reliability, efficiency, and safety of UAV-assisted communication
systems, offering a promising solution for future applications.

Index Terms—UAV network, explainable artificial intelligence,
trajectory optimization, collision avoidance

I. INTRODUCTION

In recent times, there has been an upsurge in the popularity
of unmanned aerial vehicles (UAVs), due to their remarkable
maneuverability, the ability to deploy them as per requirement,
and their proficiency in establishing wireless communication
links with a high likelihood of line-of-sight (LOS) connectiv-
ity [1]. Nonetheless, achieving optimal performance in UAV
networks poses a formidable challenge, primarily due to the in-
tricate interplay between the channel gain, which relies on the
UAV-user distance, and the transmission power employed by
the UAV itself [2], [3]. Furthermore, when contemplating the
optimization process, it becomes crucial to acknowledge the
criticality of steering clear from UAV collisions, a paramount
aspect ensuring the overall security of the network [1].

Henceforth, a substantial body of research has been ardently
dedicated to the optimization of UAV trajectory. For example,
the work of Zhan et al. [4] delves into an optimization
methodology aiming to maximize the energy efficiency of
sensor networks by meticulously fine-tuning the UAV trajec-
tory. Similarly, the authors in [5] adopt an optimization stance
encompassing trajectory, transmission power, and connection
optimization between UAVs and nodes, all with the aim of

minimizing the cumulative transmission power within the sys-
tem. Baek et al. [6] have traversed the domain of UAV trajec-
tory and route design, employing a hovering flight model as the
foundation for modeling UAV behavior. Moreover, a cluster
of researchers in [7], [8] have put forth proposals concerning
UAV trajectory optimization schemes, meticulously crafted
to minimize energy consumption or, alternatively, extend the
overall duration of UAV flight.

In addition to the aforementioned optimization paradigms,
the imperative of collision avoidance looms large, given its
intrinsic significance in ensuring the integrity and depend-
ability of UAV networks. Consequently, the notion of jointly
optimizing UAV trajectory, resource allocation strategy, and
collision avoidance strategy has gained substantial traction
as a viable solution. Towards this pursuit, Yang et al. [9]
bring forth an optimization paradigm underpinned by the
deep deterministic policy gradient (DDPG) algorithm, which
endeavors to maximize energy efficiency through a cohesive
optimization of UAV trajectory, resource allocation strategy,
and interference strategy. Zhang et al. [10] harness the deep Q-
network (DQN) method to conjointly craft UAV transmission
scheduling, power allocation, and trajectory optimization, ulti-
mately seeking to maximize the system transmission rate. As
for Liu et al. [11], they adopt a multi-agent deep deterministic
policy gradient (MADDPG) method, replete with a convo-
lutional neural network (CNN) to extract pertinent features.
This particular methodology excels in the joint optimization
of UAV operational trajectory and collision avoidance. By
leveraging deep reinforcement learning techniques, these en-
deavors effectively address the vexing concern of collision
avoidance during UAV service operations. However, a linger-
ing issue surrounding the interpretability of these approaches
raises legitimate concerns pertaining to UAV safety, potentially
culminating in avoidable legal disputes [12]. Consequently,
prioritizing interpretability and the reliability of decision-
making processes assumes critical importance when devising
algorithms tailored to UAV operations.

In a bid to augment the overall performance of UAV-assisted
communication networks, in this paper, a joint optimization
approach encompassing trajectory and power allocation is set
forth, all while taking into account the imperatives of collision
avoidance. Furthermore, a cutting-edge architecture grounded
in the principles of explainable artificial intelligence (XAI)
takes center stage, affording an efficient means of grappling
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with this multifaceted challenge. The main contribution of this
paper are as follows.

1) A scalable framework based on explainable artificial
intelligence (XAI) is proposed, which serves as the
bedrock for effectively optimizing the flying trajectory
and power allocation, all the while ensuring robust colli-
sion avoidance. The trustworthiness and interpretability
of the proposed XAI methodology bolster its credibility
and efficacy in addressing this complex problem.

2) The joint optimization problem is judiciously decom-
posed into two sequential sub-problems. In the first
phase, a power allocation and service coordinate conun-
drum, ensconced within collision avoidance constraints,
finds an optimal resolution through the adept utilization
of a Double Dueling DQN (D3QN)-based approach.
Subsequently, the trajectory optimization quandary, also
encumbered by collision avoidance restrictions, is mas-
terfully resolved using a Monte Carlo tree search
(MCTS)-based method. Notably, the entire process ad-
heres to the tenets of explainability, further enhancing
the trustworthiness of the outcomes.

3) The simulation results show the proposed method, not
only in terms of overall performance but also in terms of
generalization capabilities. Furthermore, the tree search
method unveils the decision paths followed during the
search process, thereby substantially augmenting the
interpretability of our algorithm and instilling confidence
in its decision-making mechanisms.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As depicted in Fig. 1, we consider a UAV-assisted com-
munication network comprised of multiple users and UAVs.
The set of users served by the UAVs is denoted by k ∈
K = {1, 2, 3, . . . ,K}. During flight, the altitude of the UAV
is denoted by h(t), while its distance from the k-th user at
time t is expressed as dk(t), computed as

dk (t) =

√
h2
u (t) + [xu (t)− xk (t)]

2
+ [yu (t)− yk (t)]

2
.
(1)

The average path loss between the UAV and the k-th user
can be expressed as

Lk(t) = PLoS · LLoS + PNLoS · LNLoS, (2)

where PLoS and PNLoS are the probabilities of line-of-sight
and non-line-of-sight conditions, respectively.

Considering small-scale fading, the channel gain between
the UAV and user k at time t, denoted by gk(t), can be
calculated as

gk(t) = Hk(t) · 10−Lk(t)/10, (3)

where Hk(t) is the channel fading coefficient. The variable
vk(t) serves as a performance metric, with a value of 1 indi-
cating that the UAV is serving the k-th user and 0 otherwise.
The power allocated to user k is given by pk(t), and the data
rate between the UAV and user k is represented as

R(k)(t) = B log 2
(
1 + γ(k)(t)

)
. (4)

Here, γk(t) is the signal-to-noise ratio (SNR) of the channel
between the k-th user and the UAV, which is calculated as

γk(t) =
vk(t)gk(t)Pk(t)∑K

i=1,i̸=k vk(t)gk(t)Pk(t) + σk(t)2
. (5)

with σk(t) representing the white Gaussian noise. The
communication bandwidth of the UAV is given by B. The
overall rate of the system is calculated as

R(t) =

K∑
k=1

R(k)(t). (6)

The throughput of the system over time T is represented as

R =

T∑
t=0

R(t). (7)

where R(t) is the instantaneous rate at time t. The lo-
cation coordinates of the UAV during service time, H =
{h(t), x(t), y(t), 0 ≤ t ≤ T}, are used to denote its movement
trajectory. The power allocated by the UAV to each user
is represented by P = {pk(t), 0 ≤ t ≤ T, k ∈ K}, and the
connectivity between users and the UAV is quantified using
V = {vk(t), 0 ≤ t ≤ T}. The number of steps taken by
the UAV at time t is represented by St with Smax being
the maximum number of steps that the UAV can fly. The
specific control action executed by the UAV during flight,
such as its movement trajectory or any adjustments made to
maintain a stable position in the air, are denoted by U =
{uk(t), 0 ≤ t ≤ T}. C (H,U) represents the collision statistics
function. With the objective of maximizing system throughput
and minimizing collision probability, subject to constraints on
maximum power, spatial limitations, and Quality of Service
(QoS) requirements, the problem of reliable service provision
by UAVs can be formulated as follows

max
H,V,P,U

G =

T∑
t=0

(R(t)− C(H,U)), (8)

s.t. hmin ≤ h(t) ≤ hmax,∀t ∈ [0, T ], (8a)
xmin ≤ x(t) ≤ xmax,∀t ∈ [0, T ], (8b)
ymin ≤ y(t) ≤ ymax,∀t ∈ [0, T ], (8c)∑
k∈K

vk(t)Pk ≤ Pmax,∀t ∈ [0, T ], ∀k ∈ K, (8d)

St ≤ Smax,∀t ∈ [0, T ], (8e)
Rk(t) ≥ RQos,∀t ∈ [0, T ],∀k ∈ K. (8f)

It should be noted that the optimization problem described
above is a mixed exponential non-convex problem, which is
known to be an NP hard problem. Furthermore, in the scenario
under consideration, both large-scale fading and small-scale
fading are dependent on the instantaneous position of the
UAV and users, making it difficult to solve the optimization
problem using traditional optimization methods. Therefore,
sub-problem decomposition and reinforcement learning have
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Fig. 1. Scalable and interpretable artificial intelligence framework based on UAV-assisted communication.

proven to be effective methods for dealing with complex con-
trol problems in high-dimensional continuous spaces. In the
next section, we adopt the idea of sub-problem decomposition
to decompose the problem and solve it using reinforcement
learning and MCTS methods, while also designing a corre-
sponding XAI framework, as shown in Fig. 1.

III. UAV-ASSISTED COMMUNICATION METHODS

The original problem was decomposed into two sub-
problems to reduce its complexity. The first sub-problem
involves power allocation and coordinate solving, while the
second sub-problem involves trajectory optimization and col-
lision avoidance.

A. coordinate and power allocation

UAV service coordinate solving and power allocation prob-
lems can be expressed as

max
H,V,P

R =

T∑
t=0

R(t), (9)

s.t. hmin ≤ h(t) ≤ hmax,∀t ∈ [0, T ], (9a)
xmin ≤ x(t) ≤ xmax,∀t ∈ [0, T ], (9b)
ymin ≤ y(t) ≤ ymax,∀t ∈ [0, T ], (9c)∑
k∈K

vk(t)Pk ≤ Pmax,∀t ∈ [0, T ],∀k ∈ K, (9d)

Rk(t) ≥ RQos,∀t ∈ [0, T ], ∀k ∈ K. (9e)

The D3QN reinforcement learning algorithm, which utilizes
two neural networks to fit the state and action values, as

well as an additional layer to estimate the advantage values
of each action, is used to solve the problem. The Q-value
for each action at each time step is calculated based on the
average advantage value of other actions and the action’s Q-
value. Algorithm 1 provides a more detailed description of the
algorithm.
• Action Space: The action space is a vector of size K ×

6 consisting of the UAV’s moving direction and the power
allocated to each user. The UAV has seven available movement
options, which include moving left, right, forward, backward,
ascending, descending, or remaining stationary. Additionally,
the sum of all power allocation values must be within the
power constraint limit.
• State: The state space includes the UAV’s three-

dimensional position and the channel gain between the UAV
and the users.
• Reward: To maximize the overall throughput, we design

the reward function as follows, where λ represents the penalty
factor.

R =
R(t)

2λ
. (10)

In the D3QN model, the evaluation network first receives
the abstract state information from the connected UAV and
users to determine the optimal action. The reward value is
calculated next, and the corresponding action executed in the
environment. Upon the completion of a UAV-terminal user
pair’s service, we compute the data rate for that specific period.
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Algorithm 1 D3QN algorithm for UAV service coordinates
solution

1: for each episode do
2: Initialize initial positions of UAV and users
3: Initialize the network parameter θ
4: Update ϵ in action policy
5: for each step t0 ≤ t ≤ t0 + Tr do
6: Calculate gk(t)
7: Generate state abstraction array s
8: Choose A according to action policy and Q(s, a, θ)
9: Take action a,observe r and s

′

10: Store D = (s, s
′
, r, a)

11: Sample random mini-batch of transitions
(sj , aj , rj , sj+1) from D

12: Set yj = rj + γmaxa′ Q̂(sj+1, a
′; θ−)

13: Update the action-value function using gradient de-
scent: ∆θ = α(yj −Q(sj , aj ; θ))∇θQ(sj , aj ; θ)

14: end for
15: end for

B. trajectory optimization and collision avoidance

The trajectory optimization and collision avoidance prob-
lems can be formulated as

min
H,U

C =

T∑
t=0

C(H,U), (11)

s.t. hmin ≤ h(t) ≤ hmax,∀t ∈ [0, T ], (11a)
xmin ≤ x(t) ≤ xmax,∀t ∈ [0, T ], (11b)
ymin ≤ y(t) ≤ ymax,∀t ∈ [0, T ], (11c)
St ≤ Smax,∀t ∈ [0, T ], (11d)

We addressed the issue by treating it as a Markov Deci-
sion Process (MDP) problem. The position coordinates and
velocity of the kth intruder are represented as (p(k)x ,p(k)y ) and
(v(k)x ,v(k)y ), respectively. Similarly, the position coordinates
and velocity of the ownership are represented as (ox, oy)
and (vx, vy). The ownership’s heading and tilt angles are
represented by Aψ and Aϕ. We solved the problem using the
MCTS method.

Action space: At the beginning of each time step, the target
aircraft adjusts its tilt angle and acceleration at a certain rate.
Aϕ and Aa represent the directional and acceleration action
spaces, respectively. Aϕ consists of three actions: left turn,
straight, and right turn, while Aa includes three actions: speed
up, slow down, and maintain constant speed.

Termination state: In consideration of safety, we define
dmin as the minimum collision distance between two UAVs.
When the distance between two UAVs becomes less than dmin,
it results in a collision. There are three kinds of termination
states for the entire process

1) Collision, which occurs if the distance between the
intruder and the ownership is less than dmin.

2) Time out: if the ownership leaves the defined map or is
unable to reach its destination within the specified steps.

3) Goal state: if the ownership reaches its set destination.

In MCTS, the nodes of the search tree correspond to states
in the state space. The leaf nodes of the tree represent all
possible subsequent states that can occur from performing
different actions on the current state. As each time step
involves 9 action spaces, a node can have up to 9 leaf nodes.
The MCTS algorithm selects actions by carrying out a forward
search of the search tree. Each edge (s, a) in the tree stores
an action value Q(s, a) and its number of visits N(s, a). The
tree is traversed by simulating from the root node (the initial
state). The MCTS algorithm can be divided into four steps:

1) The ownership will select the leaf node with the highest
value according to Equation (12), which maximizes the
sum of the average action value and the uncertainty
reward.

UCT = X̄j + 2C

√
2 lnn

nj
. (12)

The variable X̄j approximately represents the state-
action value of the child node, UCT = 2C

√
2 lnn
nj

known as the exploration term, nj represents the number
of times child node j has been visited, and n represents
the number of times the parent node has been visited. C
is a constant that balances exploration and exploitation.
If multiple child nodes have the same maximum value,
the leaf node will be randomly selected. If a child node
has never been visited, it will be prioritized, ensuring
that each leaf node is visited at least once.

2) At the point when the ownship enters a new node (state)
that it has not visited before, a new child node is created
in the search tree as a subnode of the previous state, or
parent node. The visit count of the new node is initially
set to 1, and the cumulative reward value is initialized
to 0.

3) Ordinarily, a large number of iterations are required
by the conventional approach to reach a termination
state by following a random policy and determine the
corresponding ultimate reward score. This leads to high
time complexity. we leverage the value function estima-
tion method to overcome this limitation. This approach
sets the iteration’s search depth and employs the value
function to compute the final reward. From a subjective
perspective, a state where the drone is approaching the
destination without any collision is considered to be
better. Based on this, we utilize the estimation function
shown in Equation (13) for non-termination states.

Ṽ (s) = 1− d(o, g)

max d(o, g)
, if s is non-terminal state

(13)
The distance between the ownship and its goal is con-
stant and equal to the diagonal length of the map. If
there are no collisions with other drones or boundaries,
the ownship receives a reward whose magnitude is
determined by the distance between itself and the goal.
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Specifically, the closer the ownship gets to the goal, the
higher the reward it receives.

4) The process of updating the final reward and visit count
for all traversed edges is called backpropagation. Once
the termination state is reached through the value func-
tion estimation function described earlier, each traversed
edge’s final reward and visit count are updated. As
the ownship transverses each edge, the edge is updated
with a reward increment while counting the number of
visits. The reward value for each edge is determined by
dividing its accumulated reward by its visit count.

A single simulation consists of executing the four steps
described earlier once. To improve decision accuracy, we
perform a large number of simulations.

C. XAI Framework

In UAV-assisted communication scenarios, strict reliability
requirements must be met in addition to the key connection
requirements for high-speed and stable data transmission. This
section proposes a scalable XAI framework that takes into
account the characteristics of UAV trajectory optimization
and collision avoidance, as depicted in Fig. 1. During flight,
UAVs gather information about their surroundings and take
appropriate control measures. Real-time environment data is
transmitted to both the UAV flight controller and the XAI
agent. The proposed framework integrates scalable XAI meth-
ods that increase confidence in decision-making for artificial
intelligence systems. The framework is scalable, incorporating
location and velocity information of UAVs and surrounding
aircraft as part of the environment data. XAI methods within
the framework use the MCTS method.

Fig. 1 illustrates the types of questions that the UAV may
present, and which XAI can address. Scalable XAI methods
can improve wireless network service quality and enhance
fault detection efficiency for service providers. Engineers can
easily detect decision-making errors. XAI can also provide
flight decision-making details for individual users, increasing
their trust. Lastly, for legal regulators, XAI can explain model
decisions in a quantifiable manner, establishing trust.

IV. SIMULATION RESULT

A. UAV coordinate and power allocation

To simulate UAV service coordinates and power allocation,
we randomly distribute users within the service area and
deploy the UAV near the initial height boundary of 100 meters.
The UAV’s flight range is 500 meters, with a width of 500
meters, and we employ a neural network with three layers and
40 hidden nodes. The activation function used is a rectified
linear unit. The Adam optimizer is used to train the neural
network.The greedy action strategy ϵ is set to linearly decrease
from 0.9 to 0.1.

• DQN: The traditional Q-value coupled DQN inputs state
information and outputs the action value of each action in this
state.

• Random: The random method is a traditional approach for
solving problems, which involves randomly choosing points

within a specified area and computing the corresponding
values at those points.
• D3QN: D3QN introduces double and dueling improve-

ments, where the input of D3QN is state information and the
output is the action value and advantage value of each action
in this state.

Fig. 2. Convergence performance of different algorithm with K = 10.

Fig. 2 illustrates the convergence of the proposed D3QN
algorithm. It can be observed that the D3QN algorithm
requires approximately 300 episodes to converge, which is
significantly less than the number of episodes required for
the DQN algorithm to converge. Furthermore, Fig. 2 shows
that the D3QN algorithm is able to converge to a performance
of around 17000, which is significantly greater than the con-
vergence value of approximately 14000 achieved by the DQN
algorithm. Overall, the results presented in Fig. 2 demonstrate
the superior convergence performance of the D3QN algorithm
compared to the DQN algorithm and Random algorithm.

B. trajectory optimization and collision avoidance

In this section, we use the UAV service coordinates obtained
in the previous section as the goal of the task. Intruders are
randomly distributed within an area with a length and width
of 2000 meters. reward is set according to Equation(14), dmin
= 50.

R(s) =


1, if s is goal state

0.1, if s is time-out state
0, if s is collision state

(14)

• DQN: The traditional Q-value coupled DQN is trained in
an environment with a fixed number of UAVs (using the states
of all surrounding intruders as inputs)
• Safe-DQN: A safety-aware DQN model consists of two

DQNs: one ensures the UAV reaches its goal safely, while
the other guarantees that the UAV does not collide with other
intruders [13].
•Tree-fast: A fast Monte Carlo Tree search method with

low steps per iteration [14].
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•Tree-depth: Our proposed Monte Carlo Tree search
method with a large number of steps per iteration and a search
depth of 3 or 4.
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Fig. 3. Performance goal rates of different algorithms with varying numbers
of intruders.
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Fig. 4. Collision rate and number of steps for different algorithms with varying
numbers of intruders.

We evaluated the performance of DQN, Safe-DQN, Tree-
fast, and Tree-depth in trajectory optimization and collision
avoidance under different intruder numbers, as depicted in
Fig. 3. As the number of intruders increases, the MCTS
algorithm can consistently sustain optimal performance com-
pared to other methods. Additionally, as depicted in Fig. 4,
the MCTS algorithm maintains its overall performance while
exhibiting a lower collision probability and shorter execution
steps as compared to other algorithms. Notably, when the num-
ber of intruders increases, the algorithm’s ability to generalize
its performance is superior to other algorithms.

V. CONCLUSION

In conclusion, this research paper has presented a remark-
able trajectory optimization solution for UAV-assisted com-
munication. By addressing the challenge of ensuring reliable
UAV services, the problem has been dissected into two cru-
cial sub-problems. The first sub-problem tackles constrained
UAV coordinate and power allocation, effectively determining
optimal coordinates considering spatial constraints, service
quality thresholds, and power constraints. This optimization
process has enhanced reliability and efficiency in UAV oper-
ations. The second sub-problem focuses on constrained UAV
collision avoidance and trajectory optimization, employing a

meticulously crafted framework that prioritizes reliability and
security. This approach mitigates collision risks and ensures
steadfast performance. Additionally, a scalable and compre-
hensive XAI framework has revolutionized decision-making,
fostering transparency, trust, and reliability in UAV collision
avoidance and trajectory optimization processes. By using the
proposed method in UAV networks, the performance can be
significantly increased while guaranteeing trustworthy colli-
sion avoidance. Future research aims to explore interpretability
in complex domains such as the Internet of Vehicles and
mobile communication.

ACKNOWLEDGEMENT

This work was supported by the National Key Research
and Development Program of China (2020YFB1807700), the
National Natural Science Foundation of China (NSFC) under
Grant No. 62071356.

REFERENCES

[1] N. Cheng, S. Wu, X. Wang, Z. Yin, C. Li, W. Chen, and F. Chen, “Ai for
uav-assisted iot applications: A comprehensive review,” IEEE Internet
of Things Journal, pp. 1–1, 2023.

[2] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
“Space/aerial-assisted computing offloading for iot applications: A
learning-based approach,” IEEE Journal on Selected Areas in Commu-
nications, vol. 37, no. 5, pp. 1117–1129, 2019.

[3] X. Wang, L. Fu, N. Cheng, R. Sun, T. Luan, W. Quan, and K. Al-
dubaikhy, “Joint flying relay location and routing optimization for
6g uavndash;iot networks: A graph neural network-based approach,”
Remote Sensing, vol. 14, no. 17, 2022.

[4] C. Zhan, Y. Zeng, and R. Zhang, “Energy-efficient data collection in
uav enabled wireless sensor network,” IEEE Wireless Communications
Letters, vol. 7, no. 3, pp. 328–331, 2018.

[5] S. Fu, Y. Tang, Y. Wu, N. Zhang, H. Gu, C. Chen, and M. Liu,
“Energy-efficient uav-enabled data collection via wireless charging: A
reinforcement learning approach,” IEEE Internet of Things Journal,
vol. 8, no. 12, pp. 10 209–10 219, 2021.

[6] J. Baek, S. I. Han, and Y. Han, “Energy-efficient uav routing for wireless
sensor networks,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 2, pp. 1741–1750, 2020.

[7] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless
communication with rotary-wing uav,” IEEE Transactions on Wireless
Communications, vol. 18, no. 4, pp. 2329–2345, 2019.

[8] Z. Wang, L. Duan, and R. Zhang, “Adaptive deployment for uav-aided
communication networks,” IEEE Transactions on Wireless Communica-
tions, vol. 18, no. 9, pp. 4531–4543, 2019.

[9] P. Yang, X. Cao, X. Xi, W. Du, Z. Xiao, and D. Wu, “Three-dimensional
continuous movement control of drone cells for energy-efficient commu-
nication coverage,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 7, pp. 6535–6546, 2019.

[10] B. Zhang, C. H. Liu, J. Tang, Z. Xu, J. Ma, and W. Wang, “Learning-
based energy-efficient data collection by unmanned vehicles in smart
cities,” IEEE Transactions on Industrial Informatics, vol. 14, no. 4, pp.
1666–1676, 2018.

[11] C. H. Liu, Z. Chen, and Y. Zhan, “Energy-efficient distributed mobile
crowd sensing: A deep learning approach,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 6, pp. 1262–1276, 2019.

[12] C. Li, L. Guan, H. Wu, N. Cheng, Z. Li, and X. S. Shen, “Dynamic
spectrum control-assisted secure and efficient transmission scheme in
heterogeneous cellular networks,” Engineering, vol. 17, pp. 220–231,
2022.

[13] L. Wang, H. Yang, Y. Lin, S. Yin, and Y. Wu, “Explainable and safe
reinforcement learning for autonomous air mobility,” 2022.

[14] X. Yang and P. Wei, “Autonomous free flight operations in urban air
mobility with computational guidance and collision avoidance,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 9, pp.
5962–5975, 2021.

6
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 15:04:56 UTC from IEEE Xplore.  Restrictions apply. 


