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Abstract—This article proposes a novel knowledge-driven
approach for resource allocation in wireless networks using
the graph neural network (GNN) architecture. To meet the
millisecond-level timeliness and scalability required for the
dynamic network environment, our proposed approach, named
UWGNN, incorporates the deep unrolling of the weighted
minimum mean-square error (WMMSE) algorithm, referred to
as domain knowledge, into GNN, thereby reducing computational
delay and sample complexity while adapting to various data
distributions. Specifically, by unrolling the WMMSE algorithm
into a series of interconnected submodules, UWGNN aligns
closely with the optimization steps of the algorithm. Our analysis
reveals the effectiveness of the deep unrolling method within
UWGNN, which decomposes complicated end-to-end mappings,
leading to a reduction in model complexity and parameter
count. Experimental results demonstrate that UWGNN maintains
optimal performance with computation latency 3–4 orders of
magnitude lower than the WMMSE algorithm and exhibits
strong performance and generalization across diverse data dis-
tributions and communication topologies without the need for
retraining. Our findings contribute to the development of efficient
and scalable wireless resource management solutions for dis-
tributed and dynamic networks with strict latency requirements.

Index Terms—Deep unrolling, graph neural network (GNN),
knowledge-driven resource allocation, weighted minimum mean-
square error (WMMSE) algorithm, wireless communication.
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I. INTRODUCTION

IN THE era of 6G, mobile communication networks are
envisioned to provide a wide variety of services and appli-

cations, from data-intensive services such as extended reality,
reliable and low-latency services, such as autonomous driving
and remote surgery, to the soaring intelligent services, such
as metaverse and ChatGPT [1]. Furthermore, 6G networks
are becoming increasingly complex and dynamic as the emer-
gence and fast development of space–air–ground integrated
networks significantly enlarge the network scale and require
efficient management of multidimensional resources [2]. This
complexity poses a significant challenge to wireless network
management, such as resource allocation schemes and task
scheduling, to fulfill the service requirements, especially
delay-sensitive and reliability services, where a fault or
delayed decision may lead to fatal outcomes. Therefore, it is
critical to design efficient, responsive, and scalable wireless
network management schemes in 6G networks.

Wireless resource allocation plays a pivotal role in network
management to allocate multidimensional wireless resources
for certain goals, such as maximizing the transmission rate
or minimizing the transmission delay or energy consump-
tion. To address the wireless resource allocation problem, a
plethora of model-based iterative algorithms, such as iterative
water-filling type algorithms [3], weighted minimum mean-
square error (WMMSE) algorithms [4], and successive convex
approximation algorithms [5], [6], have been proposed based
on the convex optimization theory. These algorithms have
successfully solved classical resource allocation problems,
often with small network scale and static network environ-
ments. However, as the network scale increases, the high
computational complexity associated with multiple iterations
of these algorithms can hardly meet the stringent millisecond-
level service requirements.

Due to the efficient real-time computational capabili-
ties, deep learning techniques have found application in
diverse areas of wireless communication systems [7], such
as UAV-assisted IoT applications [8], spectrum sharing [9],
privacy protection [10], resource management [11], and mobile
computing offloading [12]. Ye et al. [13] employed deep
neural networks (DNNs) for channel estimation and signal
detection, achieving efficient handling of channel distortion.
He et al. investigated the utilization of convolutional neural
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network (CNN)-based architectures for channel estimation in
beamspace millimeter-wave massive multiple-input–multiple-
output (MIMO) systems, surpassing the most advanced
compressed sensing-based algorithms. Tang and Wong [14]
utilized bidirectional long short-term memory in mobile edge
computing systems to handle user scheduling problems in
ad hoc networks, effectively minimizing the average age
of information. To solve the resource allocation problem
for weighted sum rate maximization, multilayer perceptrons
(MLPs) [15] and CNN [16] are employed to approximate
the WMMSE algorithm, using outputs of algorithms as labels
and reducing computational complexity. In [17], the objective
function, i.e., the weighted sum rate, is regarded as the
loss function, achieving better performance. These studies
presented exhibit impressive performance and low inference
complexity. However, applying them effectively to radio
resource management for an arbitrary number of users faces a
significant challenge. Widespread neural networks, including
DNN, CNNs, recurrent neural networks, and attention-based
Transformer models, are not readily scalable for an arbi-
trary number of users, as their input and output dimensions
must remain constant. Therefore, designing scalable neural
network architectures is crucial to effectively managing wire-
less resources given the dynamic fluctuations in user numbers
within mobile applications.

In this context, a graph structure with expandable con-
necting nodes is more suitable for capturing the dynamic
characteristics of wireless networks. By incorporating such
graph structure into neural networks, graph neural networks
(GNNs) are envisioned as a potential solution to realize scal-
able resource allocation [18], [19], [20]. A random edge GNN
(REGNN) is proposed to enhance scalability and generaliza-
tion for optimal power control in interference channels [21].
Addressing the limitations of REGNN in heterogeneous agents
and multiantenna systems, the interference graph convolutional
network is proposed in [22]. Furthermore, a message-passing
GNN (MPGNN) is presented for tackling large-scale wire-
less resource management problems, such as beamforming,
user association, and channel estimation [23]. The authors
established the equivalence between MPGNN and distributed
optimization algorithms, showcasing its performance and gen-
eralization capabilities. While GNNs demonstrate scalability,
their intrinsic learning approach primarily relies on statistical
distributions with poor interpretability, leading to struggles to
accommodate varying distributions and necessitating a large
amount of training data for a particular distribution. In the
context of radio resource management, collecting identical
distribution training data is time consuming and costly, and
the dynamic nature of wireless networks causes a data set shift
that degrades model performance.

Unlike deep learning, model-based iterative algorithms can
consistently achieve solutions with theoretical performance
guarantees. Integrating domain knowledge in model-based
algorithms and neural networks, known as knowledge-driven
methods, can simplify the architecture of machine learning
systems, decrease training overhead, enhance the interpretabil-
ity of decisions, and increase their practical utility [24], [25].
As a representative approach of knowledge-driven deep

learning, deep unrolling [26] provides an effective solution
for integrating domain knowledge with iterative algorithms.
The main idea is to design neural networks by utilizing the
structure of classical iterative algorithms, incorporating
the iterative structure of the algorithm into each layer of
the network. This approach treats the network layer as an
iteration in the original iterative optimization algorithm and
learns the network parameters from the data. Deep unrolling
updates the benefits of data-driven learning with the domain
knowledge embedded in the iterative algorithm, resulting
in improved performance and generalization capabilities. In
the field of image processing, deep unrolling has success-
fully addressed several challenging problems, including image
restoration [27], deep image deblurring [28], and image super-
resolution [29]. In the field of wireless communications,
deep unrolling projected gradient descent algorithm into a
neural network has shown better accuracy with lower and
more flexible computational complexity in MIMO detection
problems [30]. A low-complexity DNN-based MIMO detector
was proposed using the multipliers algorithm’s deep unrolling
alternating direction approach [31]. In [32], the original
iterative shrinkage thresholding algorithm is transformed into
an unrolled RNN, maintaining the robustness of the algorithm
and improving estimation accuracy.

For the WMMSE algorithm unrolled neural networks han-
dling resource allocation problems, in [33], the iterative
WMMSE algorithm is unrolled into a layer-by-layer CNN
structure, introducing trainable parameters to replace the
high-complexity operations in forward propagation, reduc-
ing computational complexity for efficient performance and
enhancing neural network generalization. In addition to
unrolling model-based iterative algorithms such as DNN and
RNN, unrolled GNN has the advantages of scalability and
interpretability. Hence, a deep unrolling architecture based on
GNN is proposed in [34], which only learns key parameters
of the WMMSE algorithm with GNN without unrolling
iterations in the WMMSE algorithm as layers in GNN. As
demonstrated in [35], aligning the GNN architecture with the
algorithm can potentially enhance the representation of the
GNN and thus reduce the sample complexity. Therefore, it
is worthwhile to investigate the GNN unrolling with accurate
alignment between GNN layers and algorithm iterations to
further improve the performance.

In this article, we propose a novel knowledge-driven GNN
architecture-based resource allocation approach for device-to-
device (D2D) networks, guided by the WMMSE algorithm,
aiming to maximize the weighted sum rate. Specifically,
we unroll each iteration of the WMMSE algorithm as one
neural network layer within our model. Within each layer,
by borrowing the three alternative optimization blocks of
the WMMSE algorithm, the proposed UWGNN consists of
three specialized neural network modules, i.e., GNNu, DNNw,
and GNNv. The design of the GNNu and GNNv modules is
inspired by the neighborhood information aggregation pro-
cess in the WMMSE algorithm, while the DNNw module
adopts the intermediate variable update strategy from the
WMMSE algorithm. By adopting the structure and domain
knowledge of the WMMSE algorithm, our proposed approach
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retains the algorithm’s robustness while effectively reducing its
computational delay, decreasing the sample complexity of the
neural network, and adapting to various data distributions. The
main contributions of the article can be summarized as follows.

1) We propose a novel GNN architecture inspired by the
WMMSE algorithm, named UWGNN. This approach
is constructed by unrolling the iterative WMMSE algo-
rithms into multilayer neural networks. To align with
the three iterative optimization blocks of the WMMSE
algorithm, we design three neural network submodules
and establish their interconnections. Furthermore, we
design the part that requires summation of neighborhood
information in the WMMSE algorithm as a GNN sub-
module, and the part of updating single node features as
a DNN submodule.

2) We conduct an analysis to demonstrate the efficiency of
the deep unrolling approach employed in the UWGNN.
Our study suggests that by aligning the network archi-
tecture with the iterative steps of the WMMSE algorithm
and decomposing the entire end-to-end learning pro-
cess into a series of submodules specifically designed
for algorithmic components, the UWGNN significantly
reduces the model’s complexity and the total number
of parameters. This modular design not only reduces
the sample complexity but also enhances the network’s
generalization capability, aligning with the theory on
algorithm alignment presented in [35].

3) Our proposed UWGNN maintains high-performance
in large-scale networks while its processing latency
remains 3–4 orders of magnitude lower than that of
WMMSE algorithm. Experimental results show that
UWGNN performs well in terms of robustness and scal-
ability. Furthermore, the architecture exhibits excellent
generalization performance when dealing with diverse
data distributions and communication topologies without
necessitating retraining for new environments.

The remainder of this article is organized as follows. Section II
introduces the communication model and the Formulas for
resource allocation problems. In Section III, we present
the WMMSE algorithm along with our proposed unrolling
network architecture. In Section IV, we demonstrate the
effectiveness of our proposed approach through numerical
experiments. Finally, Section V summarizes and concludes this
article. The notations are illustrated in Table I in this article.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a D2D scenario consisting of N single-antenna
transceiver pairs. Let pi denote the transmission power that
transmitter i uses to send a baseband signal si to receiver i.
That is, the transmission signal xi = √

pisi. Then, the received
signal at receiver i is

yi = hiixi +
N∑

j=1,j �=i

hijxj + ni ∀i (1)

where hii ∈ R represents the direct channel between
transmitter i and receivers i, hij ∈ R with i �= j interference

TABLE I
DESCRIPTION OF NOTATIONS

channel from transmitter j to receiver i, and ni ∈ R denotes
the additive noise following the complex Gaussian distribution
CN (0, σ 2) with σ 2 representing the variance of the additive
noise in the system. Based on receiver equalization ui, the
signal recovered by receiver i can be obtained as ŝi = uiyi.
Assuming that the signals of different users are independent
of each other and receiver noises, the signal-to-interference-
plus-noise ratio (SINR) of receiver i is expressed as

SINRi = |hii|2pi∑N
j �=i |hij|2pj + σ 2

∀i, (2)

where 0 ≤ pi ≤ pmax with pmax denoting as the max
transmission power of the transmitter.

Our objective is to maximize the weighted sum rate by
optimizing the transmission power, formulated as

max
p

N∑

i=1

λilog2

(
1 + |hii|2pi∑N

j �=i |hij|2pj + σ 2

)
(3)

s.t. 0 ≤ pi ≤ pmax ∀i

where the weight λi represents the priority of transmitter i in
the sum rate problem, and the power vector is expressed as
p = [p1, . . . , pN].
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B. WMMSE Algorithm

Problem (3) is nonconvex, due to the nonconvex objective
function. Many iterative algorithms have been proposed to
solve it effectively, of which the WMMSE algorithm [4] is the
most classical one. The main idea of the WMMSE algorithm is
to equivalently transform the weighted sum-rate maximization
problem into a problem of minimizing a weighted sum
of mean-squared errors (MSEs). Mathematically, let ei �
Es,n[(ŝi − si)

2] denote the MSE covariance of the transmission
signal si and the recovery signal ŝi, the formulated WMMSE
problem is expressed as

min
u,v,w

N∑

i=1

λi(wiei − log wi)

s.t. 0 ≤ v2
i ≤ pmax ∀i

ei = (1 − uihiivi)
2

+
∑

j �=i

(
uihijvj

)2 + σ 2u2
i ∀i (4)

where wi ≥ 0 is an introduced auxiliary variable indicating
the weight for MSE of transmitter i, vi = √

pi and u =
[u1, . . . , uN], v = [v1, . . . , vN] and w = [w1, . . . , wN].

It has been demonstrated in [4] that the WMMSE problem
presented in (4) is equivalent to the problem of maximizing
the sum rate as depicted in (3), with both problems sharing
an identical optimal solution denoted by vi. Subsequently, the
weighted sum-MSE minimization problem is decomposed into
three separate optimization subproblems, each of which can be
solved iteratively. Since the subproblems associated with the
optimization variable vectors {u, v, w} are convex in nature,
the algorithm utilizes a block coordinate descent approach
to solve the WMMSE problem in (4). More specifically,
by sequentially fixing two of the three variables {ui, wi, vi}
and simultaneously updating the third variable, the WMMSE
formula is as follows:

u(k)
i = hiiv

(k−1)
i

σ 2 + ∑
j h2

ijv
(k−1)
j v(k−1)

j

∀i (5)

w(k)
i = 1

1 − u(k)
i hiiv

(k−1)
i

∀i (6)

v(k)
i = λiu

(k)
i hiiw

(k)
i∑

j λjh2
jiu

(k)
j u(k)

j w(k)
j

∀i, (7)

where k = 1, . . . , K represents the number of iterations. The
detailed WMMSE algorithm is outlined in Algorithm 1.

Although the WMMSE algorithm has demonstrated high
performance in various wireless communication systems, some
of its shortcomings limit its practical application. First, the
algorithm is prone to get trapped in local optima. Additionally,
the computational time required for the WMMSE algorithm
to converge is significant, particularly in large-scale networks.

III. NEURAL NETWORK ARCHITECTURE DESIGN USING

WMMSE ALGORITHM

To enhance online computational efficiency while
preserving the interpretability of the WMMSE algorithm, we

Algorithm 1 WMMSE Algorithm

1: Initialization:{vi} to satisfy 0 ≤ v2
i ≤ pmax. The current

iteration index k = 1.
2: repeat
3: Update u(k)

i based on Equation (5);
4: Update w(k)

i based on Equation (6);
5: Update v(k)

i based on Equation (7);
6: k = k + 1;
7: until the convergence condition is met,

Output: transmission power pi = v2
i .

propose a knowledge-driven GNN approach for transmission
power allocation in D2D networks. Our proposed method
incorporates the unrolled WMMSE algorithm as the message
aggregation and combination functions within the GNN. In
what follows, we first briefly introduce GNN and the unrolling
technique, then present the knowledge-driven GNN.

A. Preliminaries

1) Graph Neural Networks: GNNs were initially designed
to process non-Euclidean structured graphs data [36]. Unlike
traditional neural networks that operate on a fixed grid of
inputs, GNNs can handle data with arbitrary connectivity,
making them well suited for tasks, such as node classification,
graph classification, and clustering detection. Particularly,
GNNs operate by iteratively passing messages between nodes
in the graph, updating the node representations based on the
received information from neighboring nodes. This process
can be thought of as a form of message passing, where each
node can aggregate information from its local neighborhood
and integrate it into its representation.

The aggregation function is primarily utilized to consolidate
the neighborhood features of nodes from their neighboring
nodes and connected edges. In contrast, the update function
is responsible for updating the current node features based
on the previous iteration node features and the neighborhood
features. Formally, the aggregate and update rules of the kth
layer at node i in GNNs are, respectively, expressed as

α
(k)
i = AGGREGATE(k)

({
β

(k−1)
j : j ∈ N (i)

})
(8)

β
(k)
i = UPDATE(k)

(
β

(k−1)
i ,α

(k)
i

)
(9)

where β
(k)
i represents the feature vector of node i at either the

kth layer or after the kth iteration. N (i) is the set of neighbor
nodes of i, and α

(k)
i is an intermediate variable.

2) Algorithm Unrolling: Algorithm unrolling, also referred
to as deep unrolling or unfolding, represents a technique that
bridges the gap between deep learning and traditional iterative
models, enabling the amalgamation of domain knowledge
and data-driven learning. The fundamental concept of deep
unrolling is transforming an iterative inference algorithm into
a hierarchical structure that mimics a neural network. Each
layer of the neural network corresponds to each iteration of the
algorithm. Gregor and LeCun [37] proposed deep unrolling
seminal work, which has been used to connect various iterative
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Fig. 1. Graph modeling of the D2D communication network. We consider
a pair of D2D users as a node in the graph and the interference link between
transmitter j and receiver i as an edge between node j and node i.

algorithms, such as those used in sparse coding, to diverse
neural network architectures. It is possible to unfold an N-step
iterative inference algorithm into an N-layer neural network
with trainable parameters. This aims to enhance the model
performance by utilizing a computationally lighter neural
network.

Unrolled networks boast high parameter efficiency and
require less training data than popular neural networks.
Therefore, this approach efficiently counters the lack of
interpretability normally found in traditional neural networks.
This approach provides a systematic link between traditional
iterative algorithms and DNNs, leading to efficient, inter-
pretable, and high-performance network architectures.

B. Graph Representation of the Weighted Sum Rate
Maximization Problem

Before presenting the knowledge-driven neural network
architecture, we consider the D2D network as a directed graph
with node and edge features. The modeled directed graph is
mathematically represented as G = (V, E), where V is the
set of nodes, and E is the set of edges. As shown in Fig. 1,
we consider a pair of D2D communication users as a node
in the graph and the interference link between transmitter
j and receiver i as an edge between node j and node i.
Typically, node features include attributes, such as node labels,
node degrees, and node positions, while edge features may
include attributes, such as edge weights, edge types, and edge
directions.

For problem (4), features of node i contain channel gain hii

between D2D pair, the weighted factor λi, transmission power
vi of transmitter i. To enhance the feature extraction capability
of GNN, we add two resource allocation intermediate features
ui, wi in node i. We denote the feature of node i by notation
vector zi, represented as

zi = [λi, hii, vi, ui, wi]
	, zi ∈ C

(3+2duw)×1 (10)

where λi, hii, vi are 1-D variables, ui and wi are a duw-
dimension vector. The node feature matrix Z can be expressed
as Z = [z1, . . . , zN].

For the interference link edge in the graph, the edge feature
of node i to node j includes the channel gain of the interfering
channel hij. The edges adjacency feature matrix A ∈ C

N×N is
given by

A(i,j) =
{

0, if {i, j} /∈ E
hij, otherwise.

(11)

By defining nodes feature matrix Z and edges feature matrix
A, the considered D2D scenario is converted as a directed
graph

max{v}

N∑

i=1

αlog2

(
I + |h ◦ v|2

A2 · v2 + σ 2I

)
. (12)

Based on this, we will develop an effective algorithmic
knowledge-inspired GNN architecture.

C. Proposed Knowledge-Driven GNN Architecture

While the non-Euclidean data structure of GNN has the
advantage of handling communication topological information
compared to other deep learning models, its internal structure
design is also essential. Most GNNs typically design their
aggregate and update functions with consideration of graph
data structures and features, such as permutation invariance
and self-attentiveness mechanisms, etc. Although these data-
driven design approaches have excellent end-to-end nonlinear
mapping performance, they often lack interpretability, behav-
ing like black-box models.

Inspired by the deep unrolling technique, we propose a
novel GNN architecture based on the unrolling WMMSE algo-
rithm, named UWGNN. The entire structure of the proposed
UWGNN model is inspired by the WMMSE algorithm, which
is constructed by unrolling the iterative WMMSE algorithms
into multilayer neural networks. Specifically, as shown in
Fig. 2, the proposed UWGNN model is a neural network of K
layers that mimics the WMMSE algorithm with K iterations.
This is achieved by the deep unrolling method, regarding one
iteration in the WMMSE algorithm as one layer of the neural
network. Then, in each iteration of the WWMSE algorithm,
there are three formulas to, respectively, optimize variables ui,
wi and vi. To maintain this interpretable structure, each layer
of the UWGNN model also consists of three neural network
modules to, respectively, learn corresponding variables. Notice
that the updates of ui and vi in the WMMSE algorithm,
as expressed in (5) and (7), require to collect information
from neighbor transceiver pairs to calculate the interference
in the denominator. This information collection process is a
summation operation of information from neighbor nodes in
the graph-structured network topology, which is similar to the
aggregation process of GNNs. Motivated by this, therefore,
we adopt GNNs to, respectively, learn ui and vi in each
layer of the proposed UWGNN model, denoted by GNNu and
GNNv. As wi in the WMMSE algorithm is updated by each
transceiver’s own information, expressed in (6), we adopt MLP
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Fig. 2. Knowledge-driven GNN architecture. The proposed GNN model
utilizes a three-module architecture inspired by the unrolling WMMSE
algorithm. The GNNu module focuses on calculating ui and the DNNw
module focuses on calculating wi, while the GNNv module computes node
power vi. This hierarchical feature extraction and node update strategy allows
for deep learning of data features and more effective cognition within the
GNN architecture.

to fit this function in each layer of the proposed UWGNN
model, denoted by DNNw.

The specific design of neural network models in each
layer of the proposed UWGNN model, i.e., GNNu, DNNw,
and GNNv, is also inspired by the three variable updates of
the WMMSE algorithm. The right part of Fig. 2 provides
a detailed description of the internal design of the three
modules. In particular, the GNNu module employs designated
aggregation and update functions to unroll the formula of
the WMMSE algorithm as expressed in (5). Typically, data-
driven GNNs pass all node and edge features to neighboring
nodes during the message-passing process. This approach
requires the GNN’s aggregation function to extract useful
features from the complete set of features, which may include
superfluous inputs. In contrast, GNNu designs the aggre-
gation function (13) based on the summation part of the
WMMSE algorithm in (5), i.e.,

∑
j h2

ijv
(k−1)
j v(k−1)

j , aligning
the input and output of the aggregation function with the
WMMSE algorithm and selectively aggregating node power

and interference channel features. This approach not only
ensures consistency with the computational framework of
the WMMSE algorithm but also avoids unnecessary input
features. Following (5), the update function (14) integrates
the aggregated feature information αui with the node features
hii, vi to update the node feature ui. Since ui is an intermediate
variable in the WMMSE algorithm, prioritizing its update
simplifies the learning process for the GNN. Thus, the GNN
model does not have to learn the complex mapping from input
features to output power features directly, which enhances
learning efficiency. The DNNw updates the node feature wi

by using MLP3 from (15) in place of (6) in the WMMSE
algorithm. In line with the design philosophy of GNNu,
GNNv unrolls the WMMSE algorithms (7) via aggregation
function (16) and update function (17). Corresponding to the
summation part of (7) within the WMMSE algorithm, i.e.,∑

j h2
jiu

(k)
j u(k)

j w(k)
j , aggregation function (16) only aggregates

the u and w features of neighboring nodes, along with the
relevant interference channel information hji. Finally, update
function (17) employs the node features λi, hii, ui, wi, and the
aggregated neighborhood information αvi to update the node’s
power feature vi.

Specifically, in (13) of the GNNu module, MLP1 extracts
neighborhood features from neighbor power vj and path loss
hij. To cope with the lack of channel information, we adopt
the MAX pooling operation to aggregate the neighborhood
information αui . Feeding αui and node feature vi, hii into the
combination function MLP2 in (14), we can obtain the ui

features of the nodes. Similarly, the DNNw module feeds ui,
node feature vi, and hii into MLP3 to calculate the node feature
wi as indicated in (15)

α(k)
ui

= MAX
{

MLP1

(
hij, v(k−1)

j

)}
, j ∈ N (i) (13)

u(k)
i = MLP2

(
hii, v(k−1)

i , α(k)
ui

)
(14)

w(k)
i = MLP3

(
hii, v(k−1)

i , u(k)
i

)
. (15)

In the GNNv module, we employ MLP4 as the aggre-
gation function, which enables us to gather information on
neighboring nodes λj, uj, wj, and the edges hji feature. The
neighborhood information αvi is aggregated by MAX pooling
operation. Finally, we use MLP5 in (16) as the combining
function to update the node power information vi

α(k)
vi

= MAX
{

MLP4

(
λj, hji, u(k)

j , w(k)
j

)}
, j ∈ N (i), (16)

v(k)
i = γ

(
MLP5

(
λi, hii, u(k)

i , w(k)
i , α(k)

vi

))
(17)

where γ (x) is a sigmoid function to constrain output power
into 1, i.e., γ (x) = [1/(1 + e−x)].

D. Training Approach

The selection of the loss function for neural networks has a
significant impact on the overall performance of the network.
In supervised learning, the loss function is computed using
the labels v̂i derived from the WMMSE algorithm. However,
in realistic scenarios, communication channel and network
topology change quickly, and ground-truth labels required for
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training are difficult to collect within a limited period of time.
And it is demonstrated in [17] that the algorithm’s output
constrains the upper limit of convergence performance.

The unsupervised loss function in (18) uses problem forma-
tion to optimize the neural network. Recent research on [17]
and [21] has shown that unsupervised training approaches out-
perform the WMMSE algorithm. Therefore, for unsupervised
training of our model, we adopt the optimization objective as
the loss function in

LU(θ) = −E

(
N∑

i=1

λilog2

(
1 + |hiivi(θ)|2∑

i �=j |hjivj(θ)|2 + σ 2

))
(18)

where θ is the learnable parameter of the neural network. In
contrast to the WMMSE algorithm that may be trapped in
local optima, our unsupervised training methodology employs
a global optimization objective as the loss function, which
holds the potential to escape local optima and achieve superior
performance.

E. Efficiency of the Proposed UWGNN

Hu et al. [38] demonstrated that model complexity influ-
ences the representational capacity of neural networks.
Typically, to approximate complicated functions, DNNs
require a large number of parameters and significant model
complexity [39]. To capture the details of the entire iterative
sequence of the WMMSE algorithm within a single model
structure, an end-to-end MLP may necessitate an extensive
number of neurons and nonlinear activation functions. As
the number of iterations increases, the ability of the MLP
to capture these additional behaviors could become limited.
In contrast, a deep unfolding neural network treats each
layer as an iterative process of the WMMSE algorithm and
further decomposes each layer into three submodules, each
corresponding to different parts of the learning algorithm.
For the neighborhood summation process in the WMMSE
algorithm, it utilizes the inherent message passing and pooling
mechanisms of the GNN submodule. This design allows
each submodule to learn only a part of the iterative process,
significantly reducing the required model complexity and the
number of parameters compared to an end-to-end MLP. With
fewer parameters to adjust, not only is the deep unfolded
neural network easier to train, but it also reduces the sample
complexity, i.e., the number of training samples required to
achieve a certain level of performance.

As proposed in [35] through the concept of algorithmic
alignment, if a neural network can simulate an algorithm with
a limited number of simple modules, i.e., it has low sample
complexity, then the network is aligned with the optimization
algorithm. Effective algorithmic alignment indicates that each
iterative step in the algorithm aids learning. Reference
[35, Th. 3.5] suggests that to reduce sample complexity and
facilitate the training process, neural networks should not
include complex cyclic structures. Moreover, [35] mathemat-
ically proves that neural networks with better algorithmic
alignment are not only easier to train but also possess superior
generalization capabilities. The deep unrolling approach of

UWGNN cleverly utilizes this concept, decomposing a com-
plex, end-to-end mapping that includes multiple iterations into
a series of hierarchical, more easily learned subtasks. Each
submodule is designed to learn a part of the mapping rela-
tionship in the optimization algorithm, thus effectively reduces
both model complexity and sample complexity, enhancing
training efficiency and generalization performance.

The computational complexity of neural networks is closely
associated with the scale of the model. Herein, we provide
a brief analysis of the computational complexity of the
UWGNN. The complexity of the GNN is primarily associated
with the number of edges E and the number of nodes N in
the graph [40]. The complexity each layer of a traditional
end-to-end GNN can be expressed as O(EFH +NHF′), where
F represents the dimension of node features, H represents
the width of the hidden layers, and F′ represents the size of
the output feature representation for each node. Unlike the
traditional end-to-end GNN architectures, UWGNN unrolls
computations in each layer across three consecutive submod-
ules: GNNu, DNNw, and GNNv. Specifically, the first module
GNNu performs message passing over the graph to learn
an intermediate representation with complexity O(EFHu +
NHuF′

u), where Hu denotes the hidden layers width of GNNu,
and F′

u denotes the size of the GNNu output feature. The
subsequent DNNw module, a dense neural network unit, trans-
forms this representation with complexity proportional to the
number of parameters, has the complexity of O(NHuF′

uHw +
NHwF′

w), where Hw denotes the hidden layers width of DNNw,
and F′

w denotes the size of the DNNw output feature. Finally,
the GNNv module further refines the representation through
another round of message passing on the graph, adding a
complexity of O(EHuF′

uHv + NHvF′
v), where Hv denotes the

hidden layers width of GNNv and F′
v denotes the size of

the GNNv output feature. Overall, the total complexity per
layer of the UWGNN is given by O(EFHu + NHuF′

u +
NHuF′

uHw + NHwF′
w + EHuF′

uHv + NHvF′
v). Although the

design of UWGNN introduces additional complexity due
to the inclusion of multiple message-passing processes, the
simplification of tasks within each submodule allows for a
reduction in the width of the hidden layers, which in actually
decreases the overall computational complexity.

IV. NUMERICAL EXPERIMENTS

This section is dedicated to conducting comprehensive
numerical tests to validate the effectiveness and generaliza-
tion capabilities of the proposed knowledge-driven network
architecture. We adopt an unsupervised learning method, using
the optimization objective of maximizing sum rate as the loss
function without additional label data. Therefore, our training
data set only needs to construct the connection topology graph
and corresponding channel data of the D2D network. In the
default experimental scenario, the connection topology graph
of the D2D network is a fully connected graph composed of
ten nodes. The differences between training samples mainly
comes from the random generation of channel data, and both
the interference link hij and the direct link hii channel data
follow the Rayleigh distribution, derived from the complex
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normal distribution CN (0, 1). The background noise variance
σ 2 is set to 0.1. The initial power characteristics vi

(0) of
the nodes are randomly initialized based on a Gaussian
distribution. Regarding neural network training under this
default setup, we employ the Adam optimizer, set to a learning
rate of 0.001, and opt for a batch size of 64 samples. Our
default training data set comprises 10 000 samples, with the
test set containing 2000 samples. We compare UWGNN with
established benchmarks and cutting-edge approaches.

1) WMMSE [4]: This is a classical iterative optimization
algorithm for weighted sum rate maximization in
interference channels. We run WMMSE for 100 itera-
tions with pmax as the initial power setting. The results
obtained from this process served as our benchmark
measurements.

2) WCGCN [23]: This is an unsupervised message passing
GNN that uses two MLP networks to aggregate neigh-
bor information and update its power information, and
obtain a performance much better than the WMMSE
algorithm.

3) UWMMSE [34]: UWMMSE is a deep unrolling archi-
tecture based on GNNs, primarily utilizing GNNs to
learn the iterative step sizes and the weight parameters
within the iterative WMMSE algorithm, with the aim
of reducing the number of WMMSE iterations while
achieving performance on par with established bench-
marks. Although UWMMSE incorporates GNNs into
iterative optimization, its core computational framework
still relies on the WMMSE algorithm.

4) MLP [15]: MLP uses the WMMSE output as a training
label to supervise and learn a function mapping between
the channel state information and the corresponding
resource allocation.

To balance the performance and control variables, we set
UWGNN, WCGCN, and UWMMSE as 3-layer networks,
corresponding to three iterations.

A. Selection of UWGNN Hyperparameters

In this section, our study focuses on the impact of model
width on model performance. A too narrow model width
will result in too few neurons, making it difficult to extract
sufficient sample features and affecting the output performance
of the model. Excessively wide model width will lead to too
many redundant neurons, increase the amount of model calcu-
lation, and require greater bandwidth to transmit intermediate
layer information in distributed GNN.

In UWGNN, there are two main factors that affect the
width of the model. The first is the aggregated neighborhood
messages dimension of αui and αvi in (13) and (16), that is, the
dimension dα . It affects the output dimensions of MLP1,4 and
the input dimensions of MLP2,5. The second is the updated
node feature dimension of ui and wi in (14) and (15), that
is, the dimension duw. It affects the output dimensions of
MLP2,3 and the input dimensions of MLP3,4. In order to
observe the impact of dα and duw on model performance,
we conducted 20 times randomly repeated experiments and
selected the WMMSE algorithm output as the baseline. As

(a)

(b)

Fig. 3. Impact of variation in width of GNN on performance. (a) Performance
impact of neighborhood messages dimension, dα . (b) Performance impact of
node feature dimension, duw.

illustrated in Fig. 3(a), the effect of dα on model performance
was demonstrated. We observed that when the size of dα was
too small, UWGNN performance declined. When dα increased
to 16, UWGNN performance exceeded the WMMSE baseline.
Further increases did not impact the model performance
significantly. We hypothesized that dα influences the ability
of the node to extract information from neighboring nodes
and concluded that as shown in the summation part of (7),
dα must be at least equal to the sum of the dimensions of
uj, wj, and hij. Reducing dα will lead to feature information
compression of neighboring nodes that decrease network
performance. However, in distributed GNNs, communication
resources are utilized during the message passing process. An
excessively wide neighborhood messages dimension requires
a larger communication cost, such as transmission latency and
bandwidth, thereby affecting the accuracy and delay of GNN
inference.

The dimensions of our two new node features, ui and
wi, have little impact on the performance of UWGNN. As
demonstrated in Fig. 3(b), slight performance degradation is
observed only when the dimension of the intermediate variable
is less than or equal to 2. Since ui and wi are 1-D variables
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TABLE II
NETWORK COMPUTATION AND PARAMETERS

TABLE III
SUM RATE PERFORMANCE

in the WMMSE algorithm [see (5)–(7)], adding duw does not
significantly influence the extraction of information from 1-D
features. And when there are a large number of irrelevant or
redundant features, the neural networks may have difficulty
identifying the truly useful features. As stated above, we set
dα to 16 and duw to 4, establishing the network unit sizes of
MLP1–MLP5 in (13)–(17) as {5, 8, 16}, {19, 8, 4}, {7, 8, 4},
{10, 8, 16}, and {27, 8, 1}. UWGNN is constructed with three
unrolled WMMSE layers, each of which shares parameters.

We use the thop library in Python to compare the computa-
tional load and the parameter count of networks, as detailed in
Table II. Compared to end-to-end GNN proposed in [23], the
deep unrolling operation in UWGNN requires two message-
passing processes, increasing the computational complexity.
However, the alignment of the algorithm’s architecture allows
for narrower intermediate layer dimensions, resulting in a
reduced parameter count for UWGNN compared to WCGCN.
As discussed in Section III-E, the deep unrolling technique,
despite introducing additional modules and computational
steps, reduces the scale of each submodule due to the simpli-
fication of the learning content. In each module of UWGNN,
the width of the hidden layers has been decreased from 32
dimensions in WCGCN to eight dimensions. The optimization
of node features and the width of hidden layers has enabled
UWGNN to strike a delicate balance between computational
efficiency and model performance. As shown in Table II,
UWGNN not only maintains performance but also has fewer
model parameters and requires less computational effort in
terms of FLOPs compared to WCGCN.

B. Sum Rate Performance

We compare the sum rate performance obtained by
UWGNN with other approaches, as shown in Table III. To
determine the upper bound, we ran the WMMSE algo-
rithm 100 times for random power initialization and selected
the best performance. As shown by the results, UWGNN and
WCGCN consistently achieve performances near the WMMSE
benchmark. Notably, UWMMSE depends on the WMMSE
algorithm for its output power determination, which impacts its
performance as the computational complexity increases. MLP
to capture iterative processes can be complex and may neces-
sitate a large number of training samples. To ensure effective
model training in this research, we increased the training data

Fig. 4. Network convergence speed comparison.

of MLP tenfold. However, as the user numbers escalates, the
performance of the MLP deteriorates sharply. This underscores
the difficulty of encapsulating iterative optimization chal-
lenges within a direct end-to-end neural network, aligning
with our earlier assumptions in Section IV. In comparison,
both UWGNN and WCGCN display remarkable stability in
performance, closely mirroring the WMMSE’s optimal results
irrespective of rising user numbers. Our findings suggest that
message passing GNNs are preferable and more effective than
other approaches for the iterative optimization problems.

C. Time Efficiency Comparison

Model performance is essential, but so is its time efficiency.
This section evaluates the convergence time of various models
during training and computation. As depicted in Fig. 4, we
examined the convergence time using varying training sam-
ple sizes. Each test was fixed at 2000 samples, and each
experiment was conducted 50 times to calculate the average
convergence time. Notably, UWGNN and WCGCN converge
swiftly across all sample sizes. The UWMMSE model, which
learns the step size parameter and utilizes the WMMSE algo-
rithm for iterative output, shows promising initial performance
but exhibits a slower linear convergence rate. When sample
size is limited, our model outperforms the WCGCN in terms
of convergence. This superiority arises because data-driven
neural network models can be severely impacted when sample
sizes inadequately represent the data distribution. Yet, our
model, due to its algorithmic knowledge, remains consistent
even with limited samples. Although our model aligns with
WCGCN in terms of convergence time for larger sample sizes,
it has a more intricate network structure, necessitating more
backpropagation cycles. This characteristic is also reflected in
our previous forward computation time table. Experimentally,
our model converges as swiftly as WCGCN, underscoring
the merits of our knowledge-centric approach that refines the
model design and expedites convergence. Notably, our model’s
adaptability is evident as it demands fewer samples when
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TABLE IV
COMPUTATION TIME (S) OF DIFFERENT METHODS

Fig. 5. Scalability comparison.

trained for novel scenarios, significantly cutting down sample
collection.

Table IV presents the computation time of various methods
across different network sizes. In this experiment, we utilized
10 000 sample groups. The table illustrates that as the network
size expands, WMMSE’s computation time rises markedly,
while the growth for UWGNN and WCGCN remains compar-
atively modest. UWGNN’s longer computation time, relative
to WCGCN, can be attributed to its more intricate network
architecture. Even though the UWMMSE model adopts an
optimized iterative step-length WMMSE algorithm, it is still
unable to curtail the rise in computation time with increasing
user size. This implies that traditional optimization algorithm-
based methods may be less efficient for larger networks. In
contrast, UWGNN demonstrates its stability in adapting to
various user sizes without the need to proportionally increase
computational burdens.

D. Scalability Comparison

In order to assess network scalability, both UWGNN and
WCGCN were independently trained over 30 epochs until
convergence was achieved in a scenario with 20 users.
Subsequently, these trained networks were transferred to new
scenarios featuring varying numbers of users, without the
need for additional training. As shown in Fig. 5, both GNN
networks have good convergence performance for a smaller
number of ten user scenario. However, when the number of
users increases to 50, the WCGCN network can no longer
exceed the performance of the WMMSE baseline, while our
network can still exceed the baseline performance. As the
number of users reaches 100 and the user connection density
intensifies, the WCGCN can no longer achieve the baseline
performance, while our network architecture still achieves the
baseline performance.

After our experiments, we found that the scalability of GNN
comes from the smoothing operation of the max pooling layer
on the features of neighboring nodes. When the user dimension
changes, the pooling layer uses SUM(.), MAX(.), or MEAN(.)

functions to extract the feature information of neighbor nodes
and edges. Experimentally, it is found that the MAX function
works best for the problem in this article. Moreover, our
network architecture undergoes two rounds of MAX pooling
because of two information aggregation operations; thus, it is
better suited for scaling to diverse scenarios with varying user
number densities.

E. Channel Distribution Generalization

The generalization performance of the network is tested
using data sets with varying channel distributions. As the
user moves, the scattered channel may convert into a direct
channel, leading to a potential shift in data distribution
from Rayleigh to Rician distributions in the communication
scenario. To ascertain the model’s generalization ability, we
adjusted the sample distribution of the channel in the test set.
The initial training set consisted of Rayleigh channels with a
mean of 0 and a variance of 1. As shown in Fig. 6(a), we
modified the variance of the Rayleigh channel within the test
set. During minor variance changes, UWGNN and WCGCN
both exhibited generalization capabilities. Nonetheless, as the
variance gap widened, WCGCN’s performance deteriorated
noticeably, signifying its limitations in adapting to data dis-
tribution shifts. With the integration of a knowledge-driven
network grounded on the WMMSE algorithm, our network
architecture demonstrated superior generalization compared
to WCGCN, maintaining robust adaptability amidst diverse
data distributions. Remarkably, our model sustained roughly
90% of its performance even amidst substantial variance
alterations. In Fig. 6(b), we introduced the line-of-sight (LOS)
component to the Rayleigh channel by increasing the channel
mean to 1, thus transforming its distribution into a Rician
distribution. Following this, we altered the variance of the
Rician distribution. The experimental results underscored the
continued robust generalization performance of our network.
Fig. 6(c) illustrates the impact of modifying the strength of
the LOS component within the Rician channel. Our model
maintained satisfactory performance under varied direct path
strengths, facilitating a seamless transition between scattered
and direct channels—a critical feature ensuring the model’s
generalization ability in a mobile environment.

F. Communication Topology Generalization

The topology of a communication network changes with
the movement of users and the addition or removal of nodes,
which affects the size of the node degree in the graph
and thus impacts the performance of GNNs. To evaluate
network generalization in adapting to communication topology
changes, we generated a connection weight matrix as depicted
in (19). The edges with weights lower than the probability
of losing connection ηlc were removed to simulate sparse
connections, allowing us to convert between fully and sparsely
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(a) (b) (c)

Fig. 6. Channel distribution generalization comparison. (a) Variance alteration in Rayleigh channel. (b) Transition from Rayleigh to Rician channel and
variance shift. (c) Adjustment the strength of LOS component.

connected interference graph data sets

C(i,j) =
{

0, cij < ηlc
1, otherwise

(19)

Â(i,j) = A(i,j) � C(i,j) (20)

where cij followed standard Gaussian distribution. Â(i,j) is a
new adjacency matrix of communication graph.

We experimented with two training and testing directions:
from dense to sparse, and from sparse to dense. First, we
trained the network on a fully connected graph data set with
ten pairs of users, migrating the test to sparsely connected
graph data. As shown in Fig. 7(a), our network degrades in
performance as the communication topology becomes more
sparse, but still maintains a generalization performance of
over 85%. In contrast, the performance of WCGCN degrades
more significantly as the topology of the communication
network changes. Second, we train the neural network on
a training sample with ηlc of 0.6 and gradually decrease
the ηlc value on the test data, making the sparse connected
graph into a fully connected graph. The results are shown in
Fig. 7(b). With increasing communication topology density,
our network performance still closely follows the WMMSE
algorithm performance, but the traditional end-to-end GNN
performance decreases as increasing interference density.

G. Mobile Generalizability Performance

The previous experiment only changed the link structure of
the communication topology, however, as wireless devices usu-
ally move, the communication channel gain changes as well.
In this experiment, we distribute N-transmitters uniformly in
the space of [1000 m × 1000 m], and the corresponding
receivers are distributed around the transmitters with distances
obeying uniform distribution U(30, 90). Then, we let each
receiver device move randomly with speed S. The change of
position of the receiver obeys a 2-D Gaussian distribution
N(0, 0, S, S, 0). At each time step, we update the position
of the nodes according to the predetermined speed and
direction and subsequently compute the distances between
nodes. According to the logarithmic distance path-loss model,

(a)

(b)

Fig. 7. Performance comparison of changing communication network
topology. (a) Dense to sparse. (b) Sparse to dense.

in the far-field region of the transmitter, the path loss at any
distance d is

PL(dB) = PL0 + 10 · n · log10

(
d

d0

)
+ Xσ (21)
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(a) (b) (c)

Fig. 8. Performance comparison of changing communication network topology. (a) Speed 50 m/s. (b) Speed 100 m/s. (c) Speed 200 m/s.

where PL0 is the path loss at a distance d0 from the transmitter,
n is the path-loss index. In free space, the value of n is
set to 2. Xσ is a Gaussian random variable representing the
shadowing effect. Notably, when the distance between any
two nodes exceeds 1000 m, the interference link path loss
is higher than 60 dB. This level of path loss means that the
interference signal has little or no impact on the receiver.
Therefore, considering the WMMSE algorithm based on
matrix operations, we set the corresponding channel coefficient
in matrix H to 0, symbolically representing the disconnection
of the link between these two nodes. When the user mobility
makes the link distance within 1000 m, the channel coefficient
matrix will be recovered as a connected link.

In Fig. 8, we test how the different user movement speeds
affect the network generalization. When the device moves
at low speed, the communication topology and channel gain
change slowly, and the distribution of training and test data
do not differ much. So, both GNNs can maintain more
than 95% performance. However, when the speed of device
movement gradually increases, and the test data changes more
drastically, the end-to-end GNN has difficulty in adapting to
the new distribution and the performance degrades. Due to the
incorporation of algorithmic knowledge, our proposed GNN
excels in its generalization capabilities, especially in dynamic
environments involving user mobility. This advantage equips
the UWGNN to seamlessly adapt to evolving communication
scenarios and maintain the communication rates under varying
conditions.

H. Performance Comparison of Partial CSI

Although UWGNN shows certain robustness in mobility
scenarios, it is still challenging to obtain complete CSI in
highly dynamic or ultradense scenarios. Therefore, we conduct
experiments to assess the sum rate performance of different
approaches under the partial CSI (PC) scenario, where the
CSI of the interference link is acquired incompletely. In
experiments, the power allocation scheme computed by the
WMMSE algorithm under the full CSI (FC) scenario served as
the baseline, denoted by FC-WMMSE. The power allocation
schemes inferred by other approaches under the PC scenario
were, respectively, labeled as PC-UWGNN, PC-WCGCN, and

PC-WMMSE. These schemes were then applied in the FC
scenario to obtain the performance of real sum rate. For PC-
UWGNN and PC-WCGCN, the neural networks are trained
on the FC scenario and tested on the PC to learn the power
allocation strategies.

In Fig. 9, within the PC scenario, we randomly discard
the CSI of some interference links. As the proportion of CSI
loss increases, the PC-WMMSE algorithm, based on iterative
optimization, struggles to accurately estimate interference,
leading to a decline in communication rate. This decline shows
a linear relationship with the increasing proportion of loss
CSI. The data-driven WCGCN continues to learn based on the
statistical distribution of training samples. When confronted
with PC, the distribution of model input will change. This
results in a distribution shift in the model’s output power
allocation scheme, which no longer matches the CSI in the
real scenario, thereby noticeably reducing the communication
rate performance. In comparison, our UWGNN model in PC
scenario demonstrates superior adaptability and robustness. On
one hand, unlike traditional data-driven GNNs, PC-UWGNN,
designed based on the deep unrolling method, does not rely
entirely on data distribution for feature extraction. On the other
hand, compared to the PC-WMMSE algorithm, PC-UWGNN
utilizes the neural network’s memory capability to infer and
supplement missing parts of CSI to some extent. As a result,
UWGNN experiences a slower performance decline in the face
of PC. These characteristics significantly advantage UWGNN
in scenarios with PC.

The performance of GNNs in the face of PC scenario
surpasses that of traditional optimization algorithms, primarily
due to their ability to effectively adapt to the incompleteness
of information through pooling functions in neighborhood
feature aggregation. For instance, the use of a MAX pooling
strategy allows the selection of the most significant features
from all neighboring nodes, enabling GNNs to maintain
robustness even when PC data is missing. To further validate
this theory, our experiment depicted in Fig. 10 specifically
zeros out the smaller elements in each column of channel
matrix H, simulating real-world scenarios of missing CSI
due to longer communication distances (or smaller channel
gains). The WMMSE algorithm in PC scenario, which needs
to sum up neighborhood information, struggles to maintain
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Fig. 9. Random removal of interfering link CSI.

Fig. 10. Targeted removal of lower gain interfering links CSI.

Fig. 11. Network sample complexity comparison.

performance at baseline levels even with the loss of only the
smallest CSI in the neighborhood. However, PC-UWGNN and
PC-WCGCN, both employing MAX pooling strategies, are
able to maintain over 90% performance even with the loss of
a small portion of CSI.

I. Sample Complexity

In [35], the concept of network sample complexity and
algorithm alignment is introduced, which shows that the higher
algorithm alignment, the lower network sample complexity.
To compare their network sample complexities, UWGNN and
WCGCN are trained using different training samples until
they attain convergence, and their performance is tested on
2000 test samples. Analysis of Fig. 11 shows that our network
performs well on small training data sets with different
numbers of users, indicating that it does not depend on a
large sample size to learn the statistical distribution of the
data, but to learn the structure and iterative calculation of the
WMMSE algorithm. Additionally, the performance improves
faster with an increase in sample size, indicating that our
network aligns more effectively with the algorithm than the
conventional GNN network.

V. CONCLUSION

In this article, we have proposed a novel knowledge-driven
approach based on the WMMSE algorithm-inspired GNN to
solve the resource allocation problem in wireless networks.
Compared with current approaches, our approach has exhib-
ited unique advantages in scalability and data generalization.
Moreover, we have introduced a hypothesis for the validity
of the GNN unrolling approach. Going forward, we plan
to extend this work to other wireless resource allocation
problems, such as bandwidth allocation, beam assignment,
etc., and further develop our results to better guide the design
of unrolling approaches. We expect that neural networks with
knowledge-driven architecture will be significant in the future
of wireless communication networks.
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