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Abstract—As an integral component of the space-air-ground
integrated network (SAGIN), the low Earth orbit (LEO) satellite
network has displayed immense potential in providing ubiquitous
connectivity and broadband mobile communication. However,
the intrinsic dynamics of LEO satellites pose unprecedented
challenges in network management and service delivery. In this
paper, we investigate the service function chain (SFC) orchestra-
tion in dynamic LEO satellite networks to achieve flexible and
efficient service provision. Considering the service requirements
and the limitations of network resources, we formulate the SFC
orchestration problem as the integer nonlinear programming
(INLP) problem for maximizing the service acceptance and the
load fairness of satellites. Then, an efficient heuristic algorithm
is proposed to solve this problem. Addressing the situation with
frequent service requests, a graph attention network (GAT)-based
approach with low complexity is also presented. Simulation re-
sults demonstrate that our proposed approaches outperform the
benchmarks by a substantial margin in terms of load fairness and
service acceptance. Besides, the proposed GAT-based approach
shows its advantage in computation complexity, and exhibits
robustness in unstable network scenarios with intermittent link
interruptions.

Index Terms—Low-Earth orbit (LEO) satellite network, load
fairness, software-defined networking (SDN), service function
chain (SFC) orchestration.

I. INTRODUCTION

THE evolution of terrestrial networks has unlocked possi-
bilities in service provision previously deemed unimag-

inable or even implausible. However, with the expanding
of human activities, natural monitoring, demands on space
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Fig. 1. An SDN/NFV-enabled LEO satellite network management framework.

security, etc., limitations are imposed on conventional terres-
trial networks both practicably and financially. To fullfill the
ubiquitous coverage, the space-air-ground integrated network
(SAGIN) has attracted both industries and academia due to
its advantage in network access anywhere and anytime for
realizing 6G. The SAGIN is composed of space segments,
air segments, and ground segments, where the low Earth orbit
(LEO) satellite network plays a key role in the space segments
and has experienced an unprecedented development [1], [2].
By the end of August 2023, SpaceX had launched more than
5,000 LEO satellites and had more than 2 million subscribers
until September 2023. These LEO satellites, orbiting at alti-
tudes typically ranging from 500 to 2000 kilometers, offer a
unique blend of broad geographic reach and reduced latency
in communication. Their relatively close proximity to the
Earth’s surface compared to geosynchronous equatorial orbit
(GEO) satellites enables LEO networks to provide high-speed
Internet with lower latency, making them ideal for real-time
applications such as voice and video communications, online
gaming, and other time-sensitive services. Furthermore, LEO
satellite networks are particularly beneficial in bridging the
digital divide by providing extraordinary network coverage in
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remote and rural areas where terrestrial network infrastructure
is limited or non-existent [3], [4]. This is crucial in facilitating
emerging services like remote surgery, environment monitor-
ing, disaster response communications, and self-driving, where
traditional connectivity methods are challenging to implement.

As the number of LEO satellites continues to grow, the
management and operation of the entire network become
increasingly intricate and challenging [5]. To address this chal-
lenge, software-defined networking (SDN) has been proposed
to separate the data layer and control layer, offering centralized
network management. Concurrently, network function virtual-
ization (NFV) technology proves its capability to abstract het-
erogeneous physical resources and provide a flexible approach
in resource management [6]. Combining SDN and NFV tech-
nologies, the administration of LEO satellite networks achieves
a level of programmability, flexibility, and scalability, and the
service function chain (SFC) technology is also enabled. Our
proposed network management framework is shown in Fig.
1, where SDN serves as the backbone to conduct system
administering, service acceptance, and resource scheduling,
and NFV is in charge of resource provisioning. As network
functions like session border controllers, load balancers, or
advanced functions like remote sensing, object detection, and
mobile edge computing (MEC) arrive in networks, they are
described into a specific sequenced virtual network functions
(VNFs) chain firstly [7]–[9]. Then, these VNFs are embedded
on satellites with virtual links chained together to serve as
a service, which is defined as the SFC. Notably, the SFC
is customizable to different user requirements, which reduces
the hardware dependence and provides a potential solution for
future on-demand network service provisioning.

Recently, several works on SFC have been presented
on ground networks and SAGINs. In ground networks, re-
searchers mainly concern the resource utilization in optical
core networks and cloud-edge synergy scenarios [10]–[18].
Whereas for the SFC orchestration in SAGINs, researchers
mainly focus on the coverage ability of networks and study
the service provision in heterogeneous networks [19]–[24]. In
[20], the SFC orchestration problem is presented to balance
the resource utilization of both ground networks and non-
terrestrial networks (NTNs). In [21], a large-scale heteroge-
neous network is considered and federated learning is utilized
to cope with the data island problem in SFC orchestration. To
date, only a few works have delved into SFC orchestration
involving satellite networks [24]. Their focus primarily re-
volves around resource sharing and competition among various
SFCs. Nevertheless, few works consider the network dynamics
and load balance. In LEO satellite networks, the topology,
propagation delay, and radio environment are time-varying,
leading to situations where previously established orches-
tration strategies may no longer meet user requirements or
could even disrupt services. Furthermore, existing studies often
overlook the critical aspect of load balancing. When individual
satellites handle an excessive number of services, it can lead to
rapid saturation, reduced equipment and lifespan. Such issues
have a direct and detrimental impact on the stability of the
entire satellite constellation and severe network congestion,
which leads to higher operational costs and lower service

acceptance ratio and resource consumption [25]. Therefore,
the SFC orchestration in LEO satellite networks must not
only be efficient in service provision but also adaptable to
the network’s dynamic nature, taking into consideration the
load on the global satellite network.

Deep reinforcement learning (DRL) has garnered significant
attention as a promising technique for handling complex
optimizations, particularly those that can be characterized as
Markov decision processes (MDPs) [26], [27]. This enables
rapid and astute decision-making in SFC orchestration, and
considerable efforts have been dedicated [28]–[31]. However,
the multilayer perceptron (MLP) in DRL operates on Eu-
clidean space and faces challenges in spatial awareness and
feature extraction of both nodes and edges in graphs, especially
for time-varying LEO satellite networks. To overcome these
drawbacks, graph neural network (GNN) has emerged as a
powerful approach for representing complex relationships in
graphs like social networks, transportation systems, and com-
munication networks [16], [32]–[35]. Nonetheless, traditional
GNNs like graph convolutional networks (GCNs) have limita-
tions in handling varying importance of diverse resources for
different SFCs. Additionally, existing GNN-based approaches
on SFC orchestration are trained within a predetermined action
space, heavily relying on the initial searching algorithm, which
constrains the expression of feature extraction module and the
exploration of reinforcement learning (RL) in return. Thus,
there is an urgent need for advanced GNN architectures
that can efficiently process complex and time-varying graph
structure of LEO satellite networks, extract diverse node state
information, and utilize diverse edge features in LEO satellite
networks. Furthermore, exploring innovative RL approaches
that break free from the limitations of pre-fetched action
spaces will be crucial to enhancing the overall performance
and scalability of SFC orchestration in dynamic LEO satellite
networks.

Against the above challenges, in this paper, we investigate
the SFC orchestration problem in LEO satellite networks. To
maximize the service acceptance under limited network capac-
ity and diverse service requirements, the SFC orchestration
in LEO satellite networks is formulated as an integer non-
linear programming (INLP) problem. To solve this problem,
we propose an efficient heuristic algorithm and a graph atten-
tion network (GAT)-based hierarchical RL approach with low
complexity. Considering the dynamics and resource utilization
in LEO satellite networks, we formulate the VNF migration
problem to maintain the service continuity. Then, two solutions
based on each SFC orchestration approach are presented to
minimize the migration cost. Finally, extensive simulations
are conducted to evaluate the performance of the proposed
algorithms in terms of service acceptance, fairness of satellite
load, robustness, etc. The main contributions are summarized
as follows.

1) We propose an SDN/NFV-enabled network manage-
ment framework to support multi-dimensional resource
scheduling in LEO satellite networks. Based on this
architecture, we formulate the SFC orchestration and mi-
gration into the INLP problems to maximize the service
acceptance and fairness of satellite load in dynamic LEO
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satellite networks.
2) Considering the satellite load and the service request, we

present an efficient heuristic algorithm to search the path
for the virtual link. Then, a greedy mechanism is utilized
to embed each VNF. For the potential interruption of
services caused by the movement of satellite constella-
tion, a Tabu search (TS)-based algorithm is introduced to
optimize the VNF migrations and ensure the continuity
of service.

3) To cope with the situation with frequent service requests,
a GAT-based hierarchical RL approach with low com-
plexity is also proposed to schedule diverse SFCs in
dynamic LEO satellite networks. Notably, the proposed
GAT-based approach can achieve similar performance to
that of the heuristic algorithm with lower computation
complexity and is robust in unstable network scenarios.

4) Extensive simulation results are exhibited to evaluate the
proposed algorithms in convergence, service acceptance
ratio, and fairness. In addition, we perform our algorithms
over several LEO satellite networks to evaluate their
computation efficiency.

The remainder of this paper is organized as follows. Section
II briefly reviews the related work. In Section III, we elaborate
the system model in detail. The SFC orchestration problem
and migration problem in dynamic LEO satellite networks are
formulated in Section IV. Then, two approaches are proposed
to solve the proposed problem in V and VI, respectively. Sec-
tion VII evaluates the performance of the proposed algorithm
through extensive simulations. Finally, Section VIII concludes
this paper.

II. RELATED WORK

Recent works in SFC orchestration have been reviewed in
this section. In the following, the works are broadly classified
from the perspective of network scenarios.

In ground networks, some works mainly concern the re-
source utilization in optical core networks and cloud-edge syn-
ergy scenarios [10]–[18]. To cope with the increasing number
and complexity of services in datacenters, it is proposed to re-
duce the service completion time and response time in service
scheduling process, and a multi-swarm particle swarm-based
optimization approach is presented to optimize the service
provision [10]. Considering the potential failures in large-scale
networks, [11], [12] study the SFC placement problem under
availability and resource constraints. In [11], the disaster-
resilient SFC provision is studied by path protection mecha-
nism, and the power consumption and the spectrum usage are
minimized. A sideway cross backup model is proposed in [12]
to guarantee higher availability, and the VNF embedding is
optimized to balance the resource consumption and reliability.
Some studies propose the SFC parallelism to process partially-
ordered services, then, the end-to-end service latency [13] or
resource consumption [14] is minimized. Similar research is
conducted in [15], where the delay and resource consumption
are jointly minimized with the consideration of safety level
of each VNFs. Researchers in [17], [18] focus on the SFC
orchestration in MEC. In order to deliver dependable service

provisioning in MEC, [17] presents to utilize the digital twin
technology to maintain the status of VNFs in real-time and the
SFC orchestration is optimized to minimize service costs. In
[18], the SFC orchestration problem and routing scheduling
in a hybrid cloud-edge synergy scenario are investigated to
minimize the resource utilization and service latency.

Besides, many researchers introduce the SAGINs to provide
network services in large-scale areas [19]–[24]. To maxi-
mize the long-term revenue-to-cost ratio and minimize the
service delay in massive interconnection scenarios, a dis-
tributed resource management architecture is proposed and
based on which, the access selection is optimized by using
a distributed DRL algorithm [19]. Considering the real-time
sparsely distributed service requests, the unmanned aerial
vehicles (UAVs)-enabled reconfigurable network architecture
is proposed in [22], where the trajectories of UAVs are opti-
mized to minimize the average service delay. Based on multi-
tier computing network in SAGINs, a multi-functional time
expanded graph-based framework is proposed to characterize
multiple computing functions for one mission flow [23], then,
the computation resources, bandwidth, and storage resources
are optimized to maximize the maximum flow. Above studies
are mainly based on air-ground-integrated networks, and they
optimize the resource scheduling to maximize the utilization
of network nodes in relatively limited coverage. To further
enhance the network coverage in remote areas and fulfill
the user demands on ubiquitous connection, the role of LEO
satellite networks is non-negligible.

However, only a few works investigate the SFC orches-
tration in satellite networks [24]. They mainly consider the
resource sharing and competition among each SFC, and formu-
late the problem as a noncooperative game. Then, an adaptive
play algorithm is utilized to find the Nash equilibrium. In LEO
satellite networks, a concerning issue arises when individual
satellites become overburdened with numerous services, lead-
ing to a rapid reduction in equipment lifespan. This directly
affects the stability of the satellite constellation, degrades
network performance, and ultimately incurs more operational
costs. Additionally, the current studies on SFC provision
primarily rely on search-based heuristic algorithms. These
algorithms often employ a simplistic and repetitive searching
mechanism, lacking a comprehensive understanding of the
global network status. As a result, overall performance may
suffer, leading to a decline in service quality and execution
efficiency. Recently, DRL has demonstrated its efficacy in
network resource scheduling [16], [30], [36]. However, the
diverse and extremely dynamic structure of SAGINs causes
MLP-based DRL to perform poorly or fail entirely. In contrast,
directly modeling and capturing complex dependencies and
interactions in graph-structured data by GNNs makes them
effective for generalization. However, current GNN-based SFC
orchestration methods are still ineffective since they can only
use pre-fetched action spaces and limited feature extraction,
which will incur a dramatic performance decline in LEO
satellite networks.

In traditional network settings, SFC orchestration is often
considered within a static or quasi-static network scenario,
where network topology and channel status remain unchanged
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over extended periods. In these settings, the focus is typically
on minimizing or balancing resource consumption across het-
erogeneous network nodes, such as UAVs and BSs. However,
in LEO satellite networks, the network topology and channel
status are time-varying. Then, problems are raised when the
initial orchestration strategy is broken or the requirements
of users are violated by the movement of satellites. In
previous studies, it was implied to reacquire user privacy
data and re-establish customized VNFs in networks. While
this approach may be feasible in scenarios with manageable
end-to-end latency, it is problematic in dynamic LEO satel-
lite networks. Here, the signaling interactions required for
VNF re-establishment must traverse long distances, leading
to unacceptable round-trip transmission delays and substantial
communication resource wastage. Therefore, the issue of VNF
migration becomes critical in LEO satellite networks, distin-
guishing it from traditional network settings. Furthermore, due
to the relatively static nature of network topology in traditional
SFC problems, many heuristic algorithms and MLP-based
approaches are effective. However, the dynamics of LEO
satellite network topology and channel status poses significant
challenges. These conditions require enormous iterative pro-
cesses for heuristic algorithms and challenge the effectiveness
of MLP-based approaches in spatial awareness and feature
extraction within graphs. Consequently, existing studies on
SFC orchestration may be inefficient or even ineffective for
dynamic LEO satellite networks. To provide service provision
ubiquitously and continuously, a capable SFC orchestration
approach considering both the service migration, satellite
loads, and network dynamics is urgently desired.

III. SYSTEM MODEL
Fig. 1 illustrates an SDN/NFV-enabled LEO satellite net-

work management framework, comprising three integral seg-
ments: the space network segment, the ground network seg-
ment, and the user segment. The space network segment
forms the backbone of this architecture, featuring LEO satellite
constellations for direct, low-latency communication and data
relay. These constellations are augmented by GEO satellites,
which provide a broader, more stable perspective for domain-
level network supervision, essential for managing the dy-
namically changing network topology of LEO satellites. The
ground network segment acts as a critical junction for service
orchestration and overall network management. It is equipped
with satellite ground stations that house satellite gateways and
SDN controllers. These controllers utilize NFV technology
to dynamically manage network resources and service flows,
ensuring efficient and flexible network operation. The user
segment, consisting of diverse user terminals, demands a range
of services, from high-bandwidth applications like remote
surgery to real-time requirements of self-driving vehicles.
Each LEO satellite within the network is furnished with
computation and communication units, enabling it to support
a variety of network services. Collaboration between LEO and
GEO satellites, facilitated through ground stations, overcomes
the limited scope of individual satellites, providing a com-
prehensive global view and enhanced network management
capabilities.

Consider an environmental monitoring use case within this
framework, specifically for forest fire detection in areas lack-
ing backhaul networks. While IoT devices such as thermal
imaging cameras or multispectral scanners can be deployed,
the voluminous data they generate in real-time often cannot be
transmitted directly to environmental agencies. Upon receiving
a service request from an environmental agency, the request
is initially defined as a specific SFC tailored to meet their
requirements. Potential VNFs in this scenario include a data
compression function for minimizing less critical data, a load
balancing function to streamline collected data and avert
traffic congestion, and a deep packet inspection function to
safeguard against data breaches or malicious interference. If
the network’s current state can accommodate this request,
the SDN controller reserves a virtual link from the targeted
area’s LEO satellite to the one nearest the environmental
agency. Concurrently, the pre-designed VNFs are sequentially
embedded along this virtual link on the LEO satellite. Once
the virtual link and VNFs are set up, the necessary data is
transmitted until the monitoring task finishes. Subsequently,
the resources utilized are released for other applications. In
the following sections, we will introduce our network model
and service model.

A. Network Model
In this study, we design the network model as a general

Walker Star LEO satellite constellation, which comprises N
homogeneous satellites evenly distributed in M LEOs. The
physical network, denoted by G = (F , E), consists of the
set of LEO satellites F and the set of physical links between
satellites E . Since network access selection is a significant
and multifaceted research area encompassing various factors
like channel status and elevation angle, we consider that users
prioritize accessing the LEO satellite with the shortest line
of sight distance and ignore the access process. Each LEO
satellite is equipped with four transceivers, with two connected
to intra-orbit satellites and the other two connected to the
nearest inter-orbit satellites. The available bandwidth of the
physical links between satellites n and m is denoted by
Bn,m ∈ B, and B is the set of available bandwidth of links.
Furthermore, the channel delay dn,m is defined as the distance
between the satellite pair (n,m) divided by the speed of light
c, as expressed as

dn,m =
distance(n,m)

c
,∀(n,m) ∈ E . (1)

Without loss of generality, we assume the satellite orbit is
circular, which means the eccentricity is 0 and the semi-major
axis equals the radius of the orbit. The location of satellite n in
Cartesian coordinates is denoted by (px,n, py,n, pz,n), which is
expressed as (2), where h is the orbit altitude of satellite n, Re

denotes the radius of the Earth, α denotes the inclination angle
of satellite orbit, β denotes the right ascension of ascending
node, τ denotes the true anomaly, and ξ denotes the argument
of the perigee. Then, the distance between satellites n and m
can be expressed as

distance(n,m) = [(px,n − px,m)2 + (py,n − py,m)2+

(pz,n − pz,m)2]
1
2 .

(3)
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 px,n
py,n
pz,n

 = (h+Re)

 cos(ξ + τ) cosβ − sin(ξ + τ) cosα sinβ
cos(ξ + τ) sinβ + sin(ξ + τ) cosα cosβ

sin(ξ + τ) sinα

 . (2)

As we focus on the communication and computation ability
of satellites, the energy consumption in re-boosting is ne-
glected, and the load of satellite n is expressed as

ln = ζ1cn + ζ2bn, (4)

where ζ1, ζ2, cn, and bn are the energy consumption weights
of computation and communication, utilized computation re-
sources, and utilized communication resources of satellite n,
respectively. The set of load of LEO satellites is denoted by
l. Then, we utilize the Jain’s fairness index to evaluate the
fairness of load in LEO satellite networks, which is expressed
as

ft =

(∑
n∈F ln

)2
|F| ·

∑
n∈F ln2

. (5)

B. Service Modeling

As previously noted, the service model utilized in our
system is the SFC, which is made up of a sequence of VNFs
that are chained together in a predefined manner. To ensure
successful service delivery, the sequential embedding of each
VNF on the network node is necessary, and the end-to-end
delay must fulfill the user’s requirement. Before each decision-
making interval, we assume that the arrived services have been
collected and ready to be orchestrated, and the set them is
denoted by Q = {q|q = 1, 2, ..., |Q|}. The bandwidth-demand
service and the computation-demand service are the two sorts
of services that are taken into account. The collection of source
nodes and destination nodes is denoted by {sq|q ∈ Q} and
{dq|q ∈ Q}, respectively. For each service q, we define its
VNF chain as vq = {vi|i = 1, 2, . . . , |vq|}, where vi is the i-
th VNF and |vq| is the total number of VNFs. Denote the data
flow between vi and vj by Eq = {(vi, vj)|vi, vj ∈ vq, q ∈ Q}.

Introduce the binary variable xvi,n,q = 1 to signify
the embedding of VNF i of service q on node n, and
xvi,n,q = 0 if not, and its solution vector is denoted by
x = {xvi,n,q | vi ∈ vq, n ∈ F , q ∈ Q}. Similarly, the binary
variable y

(n,m)
(vi,vj),q

takes the value 1 when virtual link (vi, vj)

of service q is mapped onto physical link (n,m); otherwise,
y
(n,m)
(vi,vj),q

= 0. Correspondingly, the solution vector y =

{y(n,m)
(vi,vj),q

| (vi, vj) ∈ Eq, (n,m) ∈ E , q ∈ Q}. We further
denote the binary variable zq = 1 to signify the reception of
service q, and zq = 0 otherwise. The solution vector z takes
the form {zq | q ∈ Q}.

For users, the delay requirement on each SFC is compulsory
to guarantee the quality of service (QoS) and quality of
experience (QoE). In reality, the delay of SFC is mainly
composed of communication delay and processing delay. Since
the processing delay is related to the protocol, performance,
and other uncontrollable factors, we consider the delay of

each SFC is dominated by the communication [20], which
is expressed as

tq =
∑

(n,m)∈E

∑
(vi,vj)∈Eq

y
(n,m)
(vi,vj),q

dn,m,∀q ∈ Q. (6)

IV. PROBLEM FORMULATION

In this section, we investigate the SFC orchestration in
dynamic satellite networks under the constraints of service
provision, flow conservation, and network capacity. An INLP
problem is formulated to maximize service acceptance and
load fairness. Then, to maintain the SFC in dynamic LEO
satellite topology, the VNF migration problem is formulated
to minimize the migration costs.

A. Service Provision Constraints

This subsection presents the constraints of service provision.
Before the service is delivered to the network, the source,
destination, and VNF sequence are all predefined. Constraints
C1 and C2 must be satisfied in order to guarantee that
the initial and final VNFs are embedded on the source and
destination, which is expressed as

C1 : xv1,sq,q = zq, ∀q ∈ Q, (7)

C2 : xv|vq|,dq,q = zq, ∀q ∈ Q. (8)

As a received SFC, each of its VNFs is limited to embed
on only one network node, which is expressed as

C3 :
∑
n∈F

xvi,n,q = zq, ∀vi ∈ vq, ∀q ∈ Q. (9)

For each service, the transmission delay must be within the
deadline Tq , which is expressed as

C4 : tq ≤ Tq, ∀q ∈ Q. (10)

B. Flow Conservation Constraints

Since the SFC is sequenced VNFs chained by data flow, the
flow conservation is critical to ensure the data flow is properly
processed. Consequently, the flows in should equal to the flows
out, which is expressed as

C5 :
∑
m∈F

y
(n,m)
(vi,vj),q

−
∑
m∈F

y
(m,n)
(vi,vj),q

= xvi,n,q − xvj ,n,q,

∀(vi, vj) ∈ Eq,∀n ∈ F ,∀q ∈ Q.
(11)
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C. Network Node Constraints

For each satellite, its computation and communication re-
sources are limited, and the allocated network resources cannot
exceed the satellites’ capacity, which is expressed as

C6 :
∑
q∈Q

∑
vi∈vq

xvi,n,qcvi,q ≤ Cn, ∀n ∈ F , (12)

C7 :
∑
q∈Q

∑
(vi,vj)∈Eq

y
(n,m)
(vi,vj),q

bq ≤ Bn,m, ∀(n,m) ∈ E , (13)

where cvi,q denotes the computation utilization of VNF i of
service q, bq denotes the communication utilization of service
q, Cn ∈ C denotes the computation capacity of satellite n,
and C is the set of computation capacity of LEO satellites.
C6 constrains the computation resource utilization, and C7

constrains the bandwidth utilization.

D. SFC Orchestration and Migration Problem

The SFC orchestration is optimized to maximize the service
acceptance and fairness of satellite load. An INLP problem
is formulated with the consideration of constraints C1 − C7,
which is expressed as

P1 : max
x, y, z

∑
q∈Q

zq + γ1

(∑
n∈F ln

)2
|F| ·

∑
n∈F ln2

s.t.C1 − C7,

C8 : x, y, z ∈ {0, 1},

(14)

where γ1 is the weight of fairness to balance the service
acceptance and fairness of satellite load.

In LEO satellite networks, the satellites move very fast,
which changes the network topology and channel status fre-
quently, rendering previously optimal strategy suboptimal or
even broken over time. To maintain the SFC continuity and
fulfill users’ QoS requirements in such a dynamic network
scenario, live VNF migration is unavoidable. However, the
customized VNFs combine user privacy and dedicated data,
and end-to-end retransmission will bring intolerable delay and
communication resource waste, which can be considered as
the migration costs. To maintain the continuity of services,
maximize the load fairness, and minimize the migration costs,
we formulate the VNF migration problem when the service is

interrupted by the movement of satellite networks, which is
expressed as

P2 : min
x, y, z

γ2
∑
q∈Q

∑
vi∈vq

hvi,q −
∑
q∈Q

zq − γ1

(∑
n∈F ln

)2
|F| ·

∑
n∈F ln2

s.t.C1 − C7,

C8 : x, y, z ∈ {0, 1},
(15)

where γ2 is the cost weight of VNF migration, hvi,q is the
migration decision of VNF i of service q, where hvi,q = 1
denotes the VNF i will migrate to a new network node,
hvi,q = 0 otherwise. The weights of VNF migration and
fairness ensure the continuity of each SFC as much as possible.
In P2, we minimize the migration of VNFs and maximize the
load fairness of satellite networks on the premise of ensuring
service continuity. For each service, it will occupy a specific
block of resources for a period of time. Thus, zq implies
the service is supported continually and zq = 0 when P2 is
triggered signifies the failure in migration process.

V. LASO-LAM APPROACH

As previously mentioned, our study focuses on the dynamic
provisioning scenario of SFC orchestration, where requests
arrive and expire spontaneously, and are served sequentially
based on their arrival time. In this paper, we consider two dis-
tinct scenarios, as shown in Fig. 2, based on the service arrival
frequency: one with a normal frequency of service arrivals and
the other with a higher frequency of service arrivals, which
are termed as moderate service arrival and frequent service
arrival, respectively. In cases of moderate service arrival, a
load-aware SFC orchestration algorithm, i.e., LASO algorithm,
is employed to make efficient decision in manageable scale
of service requests. Conversely, during periods of frequent
service arrival, which signal a heightened demand on the
network, a GAT-based hierarchical RL approach with low
inference complexity, i.e., GAHSO algorithm, is utilized. This
algorithm is more adept at managing scenarios with massive
user request and facilitating rapid decision-making. Subse-
quently, the system checks if the original strategy remains
valid with the LEO satellite networks operating. If the strategy
remains effective until the completion of service provision,
the service is deemed successfully executed; otherwise, the
SFC migration approach is executed to recalibrates the SFC
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orchestration strategy. In situations of moderate service arrival,
a TS-based migration algorithm, called LAM, is employed
for VNF migration. Since GAHSO Algorithm is able to be
executed parallelly in GPU, the action space in migration can
be exhaustively and efficiently searched. The details of the
algorithms are presented separately in Section V and Section
VI.

In this section, we present the LASO algorithm to derive
near-optimal solutions for problem P1. Moreover, LAM is
proposed to sustain service continuity and minimize VNF
migration in dynamic satellite networks. The details are as
follows.

The SFC orchestration can be decoupled as VNF embedding
and virtual link embedding [20]. We find the optimal virtual
routing path with the consideration of fairness of satellite load,
as shown in Algorithm 1. The available link capacity and the
end-to-end delay should meet the service requirements, which
is denoted by Req(q) = {sq, dq, Tq, vq}. To guarantee the
adequate channel capacity, we introduce the indicator function
into the link weight for each service, denoted by I (bn,m − bq),
and bn,m is the available bandwidth in link (n,m). We design
the weight of physical link (n,m) as

Wq(n,m) =
dn,mI (bn,m − bq)

exp (θ0 (ln + lm) /2)
,∀q ∈ Q,∀(n,m) ∈ E ,

(16)
where θ0 is the load fairness factor and negatively correlated
to the importance of the value of load. The load fairness factor
balances the service delay and satellite load. When θ0 = 0,
Algorithm 1 will generate the path with the lowest end-to-
end delay, and when θ0 = 1, the load of connected satellites
is valued. Initially, the value of θ0 is set to 1 to search the
routing path with maximal load fairness. Based on the updated
weight by (16), the potential routing path is generated by the
Dijkstra algorithm, and Algorithm 2 with a greedy mechanism
is enabled to schedule the VNF embedding. Potential nodes
with maximum computational capability are picked to deploy
each VNF of q. When the prospective nodes of the produced
path from Algorithm 1 are unable to instantiate all VNFs, the
embedding result is marked as a fault. Then, set θ0 = θ0−∆θ

and continue the searching loop until the halting criteria is
met. If θ0 < 0 in execution, it is implied that the orchestration
process has failed and the service has to be blocked.

In order to maintain continuous support for SFCs within the
dynamic network environment, Algorithm 3 springs into action
when the original strategy becomes invalid. In this algorithm,
a TS-based migration mechanism is utilized to minimize the
VNF migration costs and maximize the load fairness when
the initial embedded virtual link of q is broken or its delay
violates the requirements. The collection of migration decision
of each VNF in service q at k-th iteration is denoted by
gk,q = {hvi,q|vi ∈ vq, q ∈ Q}, whose length equals |vq|.
Each of its elements is initialized to zero, symbolizing that
the initial migration decision for all VNFs stands as False.
Subsequently, we obtain the neighbors of gk,q , and for each
decision g′ in the set of neighbors, the corresponding network
nodes are dropped within a replicated version of the initial
network. Then, we compute the edge weight by (16) and

Algorithm 1: LASO algorithm
Input: Service requirements Req(q), available

computation resources C, available
communication resources B, and current
network graph G

Output: SFC orchestration strategy
1 Set θ0 ← 1;
2 while θ0 ≥ 0 do
3 Calculate the weight of edges in G by (16);
4 Utilize the Dijkstra algorithm and obtain the

shortest path;
5 Embed the VNFs of service q by Algorithm 2;
6 if tq ≤ Tq and embeddingIndex ̸= fault then
7 Output the routing path and embedding

strategy uq;
8 Break the loop;
9 else

10 θ0 = θ0 −∆θ;

11 if θ0 < 0 then
12 Block the service q;

Algorithm 2: VNF Embedding algorithm
Input: Service requirements Req(q), potential routing

path, and available computation resources C
Output: Embedding strategy uq ,

1 Choose the candidate network node CandidatesList
with maximal computation resources ;

2 for VNF i ∈ vq do
3 if Available resource is enough then
4 Embed the VNF i in CandidateList(i);
5 update the VNF embedding strategy uq;
6 else
7 Set embeddingIndex← fault ;
8 Break the loop;

9 if All VNFs are embedded successfully then
10 Set embeddingIndex← true;
11 else
12 Set embeddingIndex← false;

splice the link of remaining VNFs by the Dijkstra algorithm.
In parallel, the migrated VNFs are seamlessly integrated by
employing Algorithm 2, and the migration cost is obtained.
There, the Tabu list is defined as a caching list to store the
update vector in a period of time to avoid similar strategies
being generated. Additionally, the influence is utilized as our
aspiration criteria to avoid overload nodes are chose frequently.
As the procedure continues, the cost value of each migration
decision is calculated. The potential solution, denoted by u∗

q ,
takes shape through continuous updates when its cost is below
the minimum and update vector is not in the Tabu list. Finally,
the procedure stops if the iteration exceeds the maximum value
K or u∗

q remains unchanged in several iterations successively,
and the migration strategy is obtained if u∗

q is not null.
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Algorithm 3: LAM algorithm
Input: Service requirements Req(q), initial embedding

strategy uq , available computation resources C,
available communication resources B, and
current network graph G

Output: SFC migration strategy
1 Set k ← 0;
2 Set gk,q ← zeros(|vq|);
3 while k < K do
4 Set G′ ← G ;
5 Neighbors(gk,q)← findNeighbors(gk,q);
6 for g′ in Neighbors(gk,q) do
7 for Network node n in g′ do
8 Drop n in G;

9 Calculate the weight of G′ by (16);
10 Splice the link of remaining VNFs by the

Dijkstra algorithm in G′;
11 Obtain the VNF embedding strategy u′ by

Algorithm 2;

12 Obtain the migration strategy in Neighbors(gk,q)
with minimal migration cost;

13 if migrationCost(u′
q) < migrationCost(u∗

q) and
u′
q not in TabuList then

14 Set u∗
q ← u′

q;
15 update TabuList;

16 if u∗
q is not null then

17 Set migrationIndex← true;
18 Set uq ← u∗

q ;

19 else
20 Set migrationIndex← false;

For Algorithm 1, the computation complexity mainly comes
from weight computation and the Dijkstra algorithm. In this
part, we analyze the worst case to evaluate the performance
of LASO algorithm. Firstly, the worst-case time computa-
tion complexity of while loop is T (⌈θ0/∆θ⌉). Then, the
computation complexity in each iteration is O(|E| + N2).
Similarly, the complexity of Algorithm 2 is O(log(|vq|)N).
Thus, the total complexity of our orchestration algorithm is
O(⌈θ0/∆θ⌉[N2 + |E|+ log(|vq|)N ]).

VI. GAHSO ALGORITHM

Currently, forecasting service requirements and user vol-
umes accurately remains an elusive challenge in both industry
and academia [37]. This necessitates consideration for sce-
narios characterized by an abundance of users or a high fre-
quency of service requests. However, the proposed algorithm
in Section V based on the Dijkstra algorithm will experience
a quadratically increase in computation as the number of LEO
satellites increases. Thus, it may result in decreased response
times and heightened resource consumption in controllers,
potentially hindering real-time or time-sensitive applications
in future large-scale LEO satellite networks. To this end, we
propose a RL-based algorithm with low complexity, tailored to

effectively manage situations involving high-intensity business
volumes. In the following, the dynamic SFC orchestration
is first modeled as an MDP. Then, a GAT-based extraction
module is utilized to extract the multi-dimensional attributes
of both the LEO satellite networks and service requests.
Finally, we propose a GAT-based A2C algorithm to solve
the proposed problem. Specifically, a hierarchical structure is
utilized to shape the sparse reward and judge the actions, and
the proposed approach is named as GAT-based hierarchical
A2C SFC orchestration algorithm, i.e., GAHSO algorithm.

A. Modeling Dynamic SFC Orchestration

To effectively capture the dynamic transitions between net-
work states during service provisioning, we model the transi-
tion of SFC orchestration by MDP. Specifically, it is defined as
a tuple <S,A,R, P>, where S denotes the state space in the
SFC orchestration process, which is composed of information
of the LEO satellite networks and the current orchestration
process. A denotes the available action space, and R denotes
the reward for each action and state. The reward of SFC
orchestration evaluates and provides quantitative feedback on
the agent’s actions in a given state, indicating whether they
align with the task objectives. P plays a crucial role in RL by
describing the probability of the agent transitioning from one
state to another when taking a specific action. It models the
dynamic changes in the environment.

The state in this MDP at time t, i.e., st ∈ S, is comprised
of the information of the current orchestrated service, and the
LEO satellite network containing the topology and remaining
resources of G. For the information of currently orchestrated
service, it is attached to each network node to mark the
source, the destination, and the path of virtual link passed
by. The action at ∈ A at time t is the decision of agent
determined by st and the policy function, it influences the
network state of next time, i.e., st+1. After executing at, an
instant reward rt ∈ R is generated by the reward function.
The state transition of determination process of this MDP
can be expressed as <st, at, rt, st+1> until the interruption
is activated if the orchestration is finished or the number of
algorithm executions exceeds the threshold. To be specific,
the agent starts from the source of the current service, and
each action is the routing decision of the virtual link. Only
when the agent moves to the destination, i.e., the virtual link
is embedded, and every VNF is embedded along that link,
the orchestration is successful. In previous studies, the SFCs
are usually orchestrated based on the available routing paths
obtained by the Dijkstra algorithm, which neglects the overall
network status and is restricted to the available action sets.
In our proposed algorithm, we break free from this limitation
and expand the action spaces to all available neighbor nodes.

In the following, we will introduce the basic element of RL
in our proposed problem in detail.

1) State Representation: The state in this model should
represent all the useful information relevant to service or-
chestration, and it is compromised of the network feature
and service feature. The network feature contains the net-
work topology, remaining computation resources, remaining
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communication resources, and the load of each satellite of
G, which is part of the input of graph embedding module.
The service feature encapsulates service information, i.e., the
service type, the source, the destination, the traversed path,
and the position information of agent, which is denoted by
It(q) = Req(q) ∪ {[a0, ..., at−1]}. Then, the state at t is
denoted by st = {Gt,Ct,Bt, lt, It(q)}, where the subscript
is utilized to signify the time in orchestration process.

2) Action Definition: During the orchestration process, the
action impacts the potential VNF embedding and virtual
link routing significantly, thus exerting a substantial influence
on the overall orchestration of the SFC. In this part, we
adopt a flexible but simple strategy compared with existing
studies by allowing the agent to explore from all accessible
neighbors, i.e., the action space contains all neighbors of
the agent’s current position. This shift away from predefined
action sets provides greater adaptability and resilience, re-
quiring only a mask layer to hide the non-neighbor nodes.
Specifically, the action is denoted by an one-hot vector, i.e.,
at = {a0t , a1t , ..., ant , ..., aN−1

t }, where ant = 1 denotes n is
selected as the next hop of virtual link; otherwise, ant = 0.

3) Reward Description: When devising the reward function
for RL in SFC orchestration, it is essential to consider various
factors such as rewarding successful orchestration, optimizing
performance metrics, resource conservation, and avoiding in-
valid actions. Ensuring adaptability, stability, and compliance
are key objectives, achieved by balancing objectives and
adhering to principles of sparse rewards and long-term goals.
As SFC orchestration is known to have sparse rewards, shaping
the reward function is imperative. Accordingly, we design
distinct reward functions for the determination process and
the final state. During the determination process, the action’s
compliance with resource capacity constraints and service
provisioning is vital. The instant reward before the final state
is defined as

rt =

{
−θ1dt − θ2hat

− θ3lat
, if action at is valid,

−α1, if action at is invalid,
(17)

where hat denotes the hops of the shortest path to the
destination, and θ1, θ2, and θ3 serve as coefficients for delay
from the previous network node to the next node, the number
of shortest hops to the destination of service q, and the load
of next node, respectively. −α1 represents the penalty for
constraint violation, and it is set as a large constant value
to deter the agent from making invalid determinations. When
the action is valid, the distance to the destination, the delay,
and the load of the satellite are assessed meticulously.

Similarly, the reward function in the final state should
evaluate the overall SFC orchestration process, encompass-
ing constraint violations, service provisioning, and network
fairness. Compared with the optimization objective in Section
IV, the reward function in this section is expected to provide
a more precise, logical, and meticulous assessment of the
final decision. Thus, we devise the reward function for the
final state in three cases: successful orchestration, successful
orchestration with a violated latency, and failed orchestration

(i.e., the agent fails to arrive at the destination), which is
expressed as

rt =


β0 + γ1ft, tq ≤ tr,

β1 − θ4tq + γ1ft, tq > tr,

−α2 − θ5hat − θ6nembed + γ1ft orchestration fails ,
(18)

where β0 and β1 represent the reward values of SFC orches-
tration, with β0 being greater than β1 to promote current
orchestration and penalize routing paths violating the delay
constraint. ft denotes the current value of fairness calculated
by (5). θ4 is introduced to promote the delay reduction when
the delay constraint is violated. α2 serves as the penalty
value for failed orchestration when the determination process
exceeds the maximum action size or some VNFs fail to be
embedded. nembed denotes the number of VNFs not embed-
ded successfully, while θ5 and θ6 represent coefficients for
penalties due to constraint violation.

B. GAT for Feature Extraction in SFC orchestration

Unlike MLPs that are apt for processing vector-based data,
GNNs offer the ability to effectively handle graph-structured
data, such as social networks, knowledge graphs, and molecu-
lar structures. Furthermore, GNNs exhibit context awareness,
transfer learning capabilities, and strong generalization perfor-
mance. This enables knowledge transfer and reuse by training
on one graph and transferring the learned knowledge to other
graphs with similar structures, which is beneficial in adapting
dynamic LEO satellite networks and resisting emergencies in
unstable network scenarios. Based on the GNN, GAT intro-
duces the concept of attention mechanisms, allowing for non-
uniform node interactions and adaptive feature aggregation.
By dynamically learning attention weights, GAT can capture
the varying importance of nodes and effectively aggregate fea-
tures from neighboring nodes. This flexibility and adaptability
enable GAT to focus on important information and outperform
traditional GNNs.

In this paper, we utilize the GAT as our feature extraction
module to extract the information of LEO satellite networks
and strengthen the expression of service requirements in
message passing. The structure of our proposed network is
illustrated in Fig. 3. The feature of each network node is
denoted by fi (i ∈ F), which is a 1 × F1 vector containing
remaining computation resources and the indicator index of
routing, and the matrix of node features is N ×F1. Similarly,
we denote the feature of edges by a |E| × F2 matrix, and
F2 is the dimension of edge features including the delay and
available transmission resources. The proposed graph has a
multi-layer neural network, and k is superscript to denote the
layer of network output. The detail of feature extraction is
shown as follows.

For features of each node i ∈ F , they are transformed into a
new representation space through a linear transformation layer.
For each node, the features are mapped to the input of a linear
transformation matrix denoted by Θx, which is expressed as

f
(1)
i = Θxf

(0)
i , (19)
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where f
(1)
i is the output of linear transformation, and in the

following, we define the output of k-th layer network by a
superscript. Similarly, the edge features can be transformed
using another linear transformation matrix Θe. For each edge
(i, j) ∈ E , the transformed edge feature is computed as

e
(1)
i,j = Θee

(0)
i,j , (20)

where e
(1)
i,j is the output of edge feature of linear transforma-

tion.
Next, attention coefficients αi,j are computed based on the

transformed node features and edge features. Additionally, an
activation function is utilized, i.e., σ = LeakyReLU(). Then,
the coefficients are normalized by a sigmoid function. For each
node i and its neighboring nodes j, the attention coefficient
αi,j in the k-th layer is computed as:

α
(k)
i,j =

exp(σ(aT [f
(k)
i ∥f

(k)
j ∥e

(k)
i,j ]))∑

n∈N (i) exp(σ(a
T [f

(k)
i ∥f

(k)
n ∥e(k)i,n ]))

, (21)

where a is a learned attention weight vector, || represents
the concatenation operation, and N (i) denotes the set of
neighborhood of node i.

Finally, the node features are aggregated based on the com-
puted attention coefficients. For each node i, the aggregated
feature representation is computed as

f
(k)
i = α

(k−1)
i,i Θf

(k−1)
i +

∑
j∈N (i)

α
(k−1)
i,j Θf

(k−1)
j , (22)

where the aggregation step combines the neighboring node
features and their corresponding edge features with respective
attention coefficients.

In the output layer of graph embedding, an N × Fhidden

matrix is generated, where Fhidden denotes the dimension of
the hidden feature. So far, the features of the network and
service are extracted and they can be pass forward to the
next layer or flattened to a one-dimensional vector for further
operation.

C. Hierarchical A2C-Based RL for Decision-Making

Compared with traditional problems like travelling salesman
problem (TSP) or LunarLander-v2 in gym, the SFC orchestra-
tion is a multi-step and sparse-reward mission, and its action is
difficult to be measured until the agent arrives at the destina-
tion of the current service. Moreover, the increasing number of
network nodes in LEO satellite network improves the network
capacity and incurs intractable action space conversely, which
impedes the convergence of RL. As a result, we utilize a
hierarchical actor-critic (AC)-based architecture for decision-
making in SFC orchestration.

In AC algorithms, the critic network plays a crucial role in
offering valuable feedback on the quality of actions chosen
by the policy network. This feedback serves as a basis for
the policy network to improve and optimize its actions ef-
fectively. A proficient critic network is capable of accurately
reflecting the potential future outcomes, thereby facilitating
precise corrections to the policy network’s decision-making
process. However, value estimates derived from critic network
in SFC orchestration often exhibit high variance due to lim-
ited samples and discrete reward functions. This heightened
variance may lead to unstable parameter updates and sluggish
convergence. To address this challenge, the target network is
introduced to serve as a stable criterion for policy network
and is periodically updated with the weights from the value
function network to attain enhanced accuracy.

The procedure is described in Algorithm 4. When a new
SFC request q arrives, the network orchestrator records the
state of current LEO network and the requirements of q. The
information of service q containing the source, destination,
service type, passing path (or potential passing path) together
with the remaining computation resources are concatenated
as the node features. The edge features are composed of
normalized remaining bandwidth and propagation delay. In-
tegrated with the node features and edge features, the input
of GAT feature extraction layer at t is obtained, which is
denoted by Gt. Additionally, a one-hot vector is introduced
to indicate the current position in determination. Integrated
with both Gt and the position vector, the information of st is
obtained. The actor network observes the state st and outputs
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an N -dimension vector, where each element in this vector is
conducted as the score of each LEO satellite. Mask the non-
neighbor nodes with negative infinity and input the result into
an activation function, the determination for the next hop in st
is generated. Subsequently, the reward rt and new state st+1

is obtained after executing at. To reduce the error incurred
by bootstrapping, input st and st+1 into critic network and
target network, separately. Then, the critic network generates
the state value V (st|θc), and the target network generates the
state value of st+1, i.e., V (st+1|θt), where θc and θt are the
parameters of critic network and target network, parallelly. The
temporal difference error (TD-error) At is expressed as

At = V (st|θc)− (rt + µV (st+1|θt)), (23)

where µ is the discounted factor for long-term return. Then,
the loss function and update gradient of critic network at t are
derived as

L(t, θc) :=
1

2
A2

t , (24)

∇L(t, θc) = γcAt · ∇θcV (st|θc), (25)

where γc is the learning rate of critic network. Similarly, the
update gradient of actor network [38] is derived as

∇L(t, θa) = γaAt · ∇θa lnπ(at|st; θa), (26)

where π(at|st; θa) denotes the policy function of actor net-
work, and γa is the learning rate of actor network. Until
now, the gradient of both actor network and critic network
is obtained, and they are accumulated until the orchestration
of current service request is finished. Then, Algorithm 2 is
utilized to embed the VNFs. In the determination process, the
parameters are not updated, because the orchestration of SFC
is not dependent on a single step but the whole determination
process, and it will fail if the total delay is violated or it
does not arrive at the destination. Therefore, we utilize a
hierarchical update strategy to update the parameters once
an orchestration process. Additionally, the proposed GAHSO
approach is able to be processed parallelly in GPU, and all
possibilities in VNF migration can be examined simultane-
ously. Hence, the strategy with minimal migration cost will
be selected as the final decision for P2, directly.

D. Time Complexity Analysis

The time complexity of the GAHSO is analyzed as fol-
lows. In the proposed approach, the computation complexity
is mainly incurred by inference in actor network, i.e., the
GAT network and MLP. As mentioned before, N denotes
the number of network nodes in LEO satellite networks, |E|
denotes the number of edges in networks, F1 denotes the
feature of each node, F2 denotes the dimension of edge
features, and Fhidden denotes dimension of hidden features.
The computation complexity in feature extraction contains
the linear transformation, attention coefficient computation,
and feature aggregation. In linear transformation, the required
number of floating-point operations is O(F1FhiddenN) and
O(F2Fhidden|E|) for network nodes and edges, separately. In
attention coefficient computation, (21) maps a 3 × Fhidden

matrix to a real number value if the attention head is one. Then,

Algorithm 4: GAHSO Training
Input: Service requirements Req(q), initial available

computation resources C, initial available
communication resources B, and initial
network graph G

Output: Trained policy network π(θa) and value
function network V (θc)

1 Initialize the parameters of policy network π(θa) and
value function network V (θc) with random weights;

2 Synchronize the parameters of target network V (θt)
with V (θc);

3 Initialize exploration parameters;
4 for episode = 1 to EPISODE do
5 Reset the network to the initial state G;
6 Reset gradient of actor network and critic network

as ∇La and ∇Lc;
7 Set flag ← 0;
8 for each newly-arrived service request q do
9 Integrate the information of q and G;

10 Set t← 0;
11 Get initial state st;
12 while service is not orchestrated successfully

and t ≤ K do
13 Sample action at from the policy network

πt;
14 Execute action at, and observe reward rt

and next state st+1;
15 Calculate the update gradient of critic

network and actor network by (25) and
(26), separately;

16 ∇Lc ← ∇Lc −∇L(t, θc) ;
17 ∇La ← ∇La +∇L(t, θa) ;
18 t = t+ 1;

19 Update policy network π using gradient ascent:
θa ← θa + γa∇La;

20 Update value function network V using
gradient descent: θc ← θc + γc∇Lc;

21 if flag = FLAG then
22 Update target networks;
23 Set flag ← 0;

the required number of floating-point operations in this process
is O(3Fhidden|E|). In feature aggregation, the operation type
is mainly matrix-vector weighted summation, which is not as
complex as multiplication and can be neglected. Besides, the
activation operation also has a lower complexity and can be
ignored [39]. Generally, the MLP in actor network contains a
three-layer neural network, and the dimension of the middle
layer is denoted by Fm1 and Fm2. Similarly result for MLP
network can be derived and whose worst-case time complexity
is T (FhiddenFm1N + Fm1Fm2 + Fm2). Consequently, the
complexity is O(F1FhiddenN+FhiddenFm1N+log(|vq|)N+
F2Fhidden|E|+3Fhidden|E|). With the escalating scale of LEO
satellite networks, it becomes evident that GAHSO presents a
more efficient computation complexity when juxtaposed with
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LASO, which is also verified in our simulations.

TABLE I
SIMULATION SETTINGS

Parameter Value
The number of satellites in the network N 25-200
The height of satellite orbit Re 2000 km
CPU capacity of each satellite Cn 400-600 CPU unit
The required bandwidth of each service bq 20-80 MHz
The required CPU units of each VNF cvi,q 50-200 CPU unit
Bandwidth between each satellite Bn,m 200 MHz
Maximum of action size K 20-30
Learning rate of actor network γa 0.00001
Learning rate of critic network γc 0.00001
The discounted factor for long-term return µ 0.9999
The dimension of network node features F1 128
The dimension of edge features F2 128
The feature of hidden features Fhidden 128
The speed of light c 2.99× 108m/s
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Fig. 4. Convergence trend of the reward with the training epoch.

VII. PERFORMANCE EVALUATION
This section exhibits the simulations to assess the perfor-

mance of the proposed algorithm in terms of convergence,
service acceptance, fairness, and robustness. Drawing from
the configuration in [24], [40], our scenario takes shape as a
Walker Star LEO satellite constellation, which comprises 100
satellites equally dispersed across 10 LEO orbits positioned
2000 km above the Earth’s surface. Additionally, two con-
stellations containing total 25 satellites and 200 satellites are
also considered, and realistic location data of satellite Earth
stations are set as the locations of each user terminal. The main
parameters of our scenario are detailed in Table I. Our evalua-
tion encompasses the performance of our proposed algorithms,
named LASO-LAM and GAHSO, juxtaposed against three
benchmark approaches. The first benchmark is to deploy VNFs
and migrate them in a greedy manner, i.e. the path with mini-
mal hops (MH) and the path with minimal migration numbers
(MMN). To examine the performance of LAM, MN with LAM
is utilized as the second benchmark. The third benchmark is
pheromone-based fault avoidance algorithm (PFA) which is
updated from the ant-colony optimization [41]. The simulation
is carried out on a computer with 3.0 GHz Intel Core i5-9500,
16 GB RAM, and NVIDIA 2060.

In Fig. 4, we utilize the GCN approach in [34] to evaluate
our proposed feature extraction module in convergence. This
figure unveils a perceptible enhancement in the performance

Fig. 5. Comparison of acceptance ratio between proposed algorithms and
benchmarks.

Fig. 6. Comparison of fairness between proposed algorithm and benchmarks.

of both algorithms as the training epoch progresses, ultimately
culminating in convergence within approximately 150 epochs.
In the training process, it is shown that although the proposed
GAT-based RL is weaker than the GCN-based RL at the
beginning, it converges to a relatively large value and is
more stable than the GCN-based approach after about 50
epochs. This is because the utilized attention mechanism can
strengthen the expression of essential information such as
available resources in SFC orchestration.

In Figs. 5 and 6, we set the service arrival rate to 3 per
slot while maintaining a bandwidth-demand to computation-
demand service type ratio of 0.5. Fig. 5 compares the aver-
age acceptance ratio of the five algorithms. Notably, LASO-
LAM outperforms four benchmarks and achieves nearly 99%
of service acceptance. Intriguingly, GAHSO also secures a
notable performance, demonstrating merely a 2% decline. The
reason is that LASO-LAM and GAHSO utilize the integrated
weight of both computation and communication to adapt the
multi-dimensional requirements of each SFC, and additional
search mechanism is utilized in LASO-LAM to find more
potential solutions. Fig. 6 compares the average fairness of the
five algorithms, with the LASO-LAM and GAHSO initially
appearing lower than PFA-MMN but quickly outperforming
all three benchmarks. The reason is the services in PFA avoid
passing the nodes in previous solutions. When the number
of services increases, LASO-LAM and GAHSO perceive
the status of LEO satellite network and schedule the SFCs
uniformly. Although the performance of GAHSO is not as
good as that of LASO-LAM, GAHSO is also a promising
approach considering the simplicity of inference.
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Fig. 7. Service type ratio versus acceptance ratio.

Fig. 8. Service type ratio versus fairness.

Different types of service influence the status of network
in different ways. In Figs. 7 and 8, we show the service
acceptance and fairness across diverse ratios of bandwidth-
demand to computation-demand services. In Fig. 7, the pro-
posed approaches beat the benchmarks when the ratio is less
than 1. This is because our proposed algorithm considers
the multi-dimensional network resources and the service re-
quirements concurrently, and too many services with high
transmission demands would crowd each other in transmission.
Upon scrutinizing ratios lower than 60%, the LASO-LAM
exhibits superior performance over GAHSO. This can be
attributed to the Dijkstra algorithm’s effective evasion of node
breakdowns, thereby yielding enhanced outcomes. Similarly,
Fig. 8 shows that at the same service ratio, the proposed
LASO-LAM achieves twice the fairness value of PFA-MMN
and MH-MMN, and nearly 60 percentage points higher than
MH-LAM, with the highest service acceptance ratio. The
performance of GAHSO is also greater than three benchmarks
in service acceptance and load fairness.

Fig. 9 shows the comparison among five algorithms with
varied service arrival rates (chosen from [20, 30, 40, 50] per
ten time units), and the ratio of each service is set as 0.5. It
can be seen from the figure that the proposed LASO-LAM
and GAHSO achieve better performance and are more stable
under varied service arrival rates. When the service arrival
rate is set to 20 per ten time units, the average acceptance
ratios of LASO-LAM and GAHSO can approach nearly 100%.
With the service arrival rate increasing, the performance of
all algorithms decreases, while all benchmarks drop fast. But
the GAHSO algorithm can maintain at least 95% of the
performance of LASO-LAM algorithm and outperform 20%

Fig. 9. Arrival rate versus acceptance ratio.

Fig. 10. Acceptance ratio of GAHSO approach under unstable network
scenario.

of the worst approach.
In real LEO satellite networks, the physical environment is

dynamic and unstable. Moreover, solar phenomena like coro-
nal mass ejections and solar winds exert disruptive influences,
potentially causing disruptions and impairments in satellite
communication links [42]. Thus, we simulate to observe the
robustness of the trained model under unstable network status
where interconnection loss exists in operation. In Fig. 10,
we utilize the pretrained model of GAHSO to evaluate its
robustness. It is presented that the average acceptance stays
around 97% when the network status remains stable. Suddenly
at the sixth epoch, random interconnections are broke manu-
ally and the average acceptance ratio drops to nearly 79%
instantaneously. This is because similar features are extracted
when the network remains stable, and the actor network prefers
acting similarly. Therefore, some SFCs fail in the sixth epoch.
Remarkably, epochs 7 to 10 witness a rapid upswing in
performance, culminating in convergence around the twentieth
epoch. Compared with the convergence process in Fig. 4 where
nearly 150 epochs are required, only after 4 epochs can the
pretrained model achieve nearly 95% performance compared
with the initial state and nearly 6 more epochs can converge.
It is illustrated that the proposed GAHSO approach is suitable
for SFC orchestration in dynamic LEO satellite networks, and
is able to perceive real-time network topology changes and
respond quickly when emergencies occur.

Regarding the practicality of the algorithm, we summarize
the average running time for the algorithms to serve 100 SFC
requests under three different LEO satellite constellations in
Table II. Notably, the novel GAHSO approach shines here,
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boasting a consistently stable running time. Even with the
satellite network topology expanded from 25 to 200 satel-
lites, the running time merely quadrupled. Comparatively, the
LASO-LAM excels in fairness and service acceptance, yet its
running time exhibits explosive growth, ballooning nearly 10
times when network size quadruples, and it achieves nearly
31.98 seconds when the number of satellites increases to 200.
This phenomenon echoes through MH-LAM and PFA-LAM,
owing to their common reliance on the Dijkstra algorithm.
As a result, the proposed GAHSO has more potential power
in the future large-scale LEO satellite networks for SFC
orchestration.

TABLE II
COMPUTATION TIME PER 100 SFCS (SECONDS)

Approach The Number of Satellites in Network
25 100 200

GAHSO 25.265 56.488 98.259
LASO-LAM 66.371 602.150 3197.657

MH-LAM 2.378 129.698 567.932
PFA-LAM 4.792 137.286 749.250

VIII. CONCLUSION

In this paper, we have investigated the SFC orchestration in
LEO satellite networks and proposed an SDN/NFV-based net-
work management architecture to schedule network resources.
With the consideration of resource limitations of network in-
frastructures and service requirements, we have formulated the
SFC orchestration as an INLP problem to maximize the service
acceptance and the load fairness of the satellite networks. To
solve the proposed problems, two approaches with different
performance and computation complexity have been presented.
Then, multifaceted simulations have been carried out, and the
results have demonstrated the effectiveness of the proposed
algorithms in terms of service acceptance, fairness, and exe-
cution time. Meanwhile, the proposed GAHSO approach has
shown robustness when connections between the LEO satellite
network are destroyed randomly. The proposed algorithms lay
a foundation for further studies in SFC provision and multi-
dimensional resource scheduling for LEO satellite networks.
In future work, we will leverage the advantage of UAVs in
service provision while taking into account the spatio-temporal
correlation with the operation of LEO satellite networks.
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