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Abstract—Radio map (RM) is a promising technology that
can obtain pathloss based on only location, which is significant
for 6G network applications to reduce the communication costs
for pathloss estimation. However, the construction of RM in
traditional is either computationally intensive or depends on costly
sampling-based pathloss measurements. Although the neural net-
work (NN)-based method can efficiently construct the RM without
sampling, its performance is still suboptimal. This is primarily
due to the misalignment between the generative characteristics of
the RM construction problem and the discrimination modeling
exploited by existing NN-based methods. Thus, to enhance RM
construction performance, in this paper, the sampling-free RM
construction is modeled as a conditional generative problem,
where a denoised diffusion-based method, named RadioDiff, is
proposed to achieve high-quality RM construction. In addition,
to enhance the diffusion model’s capability of extracting features
from dynamic environments, an attention U-Net with an adaptive
fast Fourier transform module is employed as the backbone
network to improve the dynamic environmental features extracting
capability. Meanwhile, the decoupled diffusion model is utilized to
further enhance the construction performance of RMs. Moreover,
a comprehensive theoretical analysis of why the RM construction
is a generative problem is provided for the first time, from
both perspectives of data features and NN training methods.
Experimental results show that the proposed RadioDiff achieves
state-of-the-art performance in all three metrics of accuracy,
structural similarity, and peak signal-to-noise ratio. The code is
available at https://github.com/UNIC-Lab/RadioDiff.

Index Terms—radio map, denoise diffusion model, generative
problem, wireless network.

I. INTRODUCTION

In wireless networks, pathloss quantifies the attenuation of
signal strength between a pair of sender and receiver caused
by free-space propagation loss and interactions of radio waves
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with obstacles [1]–[3], which is critical to be measured for wire-
less resource management [4]–[6]. Traditionally, the pathloss
measurement usually depends on pilot transmission and signal
processing [7]. However, the dramatic increase of network
nodes and antennas has led to the challenge of estimating
high-dimensional channels [8], resulting in significant costs in
training and feedback overhead, as well as signal processing
complexity [9]. This issue further deteriorates in high-mobility
scenarios with short channel coherence times for low-latency
applications [10], [11]. Meanwhile, the upcoming 6G networks
will introduce a large variety of node types, including passive
equipment such as intelligent reflective surfaces (IRS) [12],
which cannot actively transmit pilots or engage in digital signal
processing to measure the pathloss.

The emergence of these new scenarios makes it necessary
to efficiently obtain pathloss using easy-to-be-obtained in-
formation without pilot transmission and signal processing.
Consequently, radio map (RM) technology has been developed,
by which the pathloss can be acquired just through location
information [13]. Traditional RM construction methods can
be categorized into two types: (1) sampling-based approaches
that rely on sampling position measurements (SPM) within
the RM region, which are then used for interpolation or
solving specific least squares problems to construct the RM
[14]–[16], and (2) sampling-free methods which are achieved
through environmental 3D modeling and electromagnetic ray
tracing (ERT) [17]. However, both methods face their own
inherent challenges. The sampling-based methods require SPM
of the RM construction area, with too few or inaccurate
measurements leading to poor construction quality, while a large
number of high-precision measurements significantly increase
RM construction costs. Moreover, such methods cannot be
used to construct RM in never-to-reach regions, limiting its
applicability, such as UAV trajectory plan. On the other hand,
the ERT-based method, while avoiding measurement costs, is
burdened with high computational complexity and struggles
to achieve RM construction within acceptable timeframes.
Furthermore, both methods are restricted to the construction of
static RM (SRM) due to their construction principles, which
do not account for the real-time transformation of elements
affecting pathloss. Consequently, changes in pathloss resulting
from factors such as vehicle motion or alterations in reflection
diameters are not reflected in the RM. The sampling-based
method requires multiple sampling points to be measured
across a wide area, making it impractical to arrange sufficient
measurement equipment for simultaneous pathloss collection.
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(a) The illustration of SRM. (b) The illustration of DRM.

Fig. 1: Illustration of the RM, where the yellow elements represent the
heatmap of pathloss; the brighter the yellow, the higher the pathloss.
The red elements denote vehicles, and the blue elements are static
buildings. Since, static buildings can completely block electromagnetic
signals from entering their interiors, resulting in an internal pathloss
of zero, to intuitively represent the impact of static buildings on the
RM, we have colored them blue.

Additionally, the time-series measurement of different sampling
points/sets leads to data collection at different times, rendering
real-time RM construction unattainable [14], [15]. Similarly,
the ERT-based method, which fundamentally relies on ray
tracing of a static 3D scene, typically involves calculations that
take several minutes or even longer, rendering it unsuitable for
RM construction with dynamic environmental features [17].

To address these challenges, numerous researchers have ex-
ploited neural networks (NNs) with rapid inference capabilities
to facilitate RM construction. The most notable pioneering
work is the RadioUNet that leverages the U-Net, which is
a classical architecture for image-to-image tasks, for RM
construction [18]. Although some NN-based methods have
demonstrated better performance than traditional SPM-based
methods in RM construction, their performance, especially
in details construction for the dynamic RM (DRM) with
multiple dynamic obstacles1, is poor. Therefore, the majority
of NN-based methods focus on RM construction in static
environments, neglecting the exploration of RM construction
in dynamic environments [18]–[21]. This is primarily attributed
to two challenges: the heterogeneous propagation character-
istics of electromagnetic waves and the complexity of RM
texture features. The RM construction in static environments
typically only concentrates on the influence of buildings on
electromagnetic ray propagation, since it can be assumed that
all objects affect electromagnetic rays in the same manner.
In the context of DRM construction, the impact of moving
objects, such as vehicles, on electromagnetic rays must be taken
into account. As shown in Fig. 1, the influence of vehicles
on electromagnetic ray propagation markedly differs from
that of buildings. Different from static obstacles with large
shapes and high heights, which can completely block direct
electromagnetic rays from the base station (BS) to their surfaces,
dynamic obstacles such as vehicles, due to their low height
and small size, cannot entirely obstruct the electromagnetic

1It is important to note that in this paper, we construct the RM based on a
snapshot of the environment, without considering the Doppler effect caused
by vehicle motion on the pathloss. Consequently, the main difference between
DRM and SRM lies in the snapshot time interval and whether the influence of
small-scale obstacles on the propagation of electromagnetic rays is considered.

signal. This partial blockage results in a reduction of the
pathloss rather than a complete obstruction, thereby increasing
the complexity of RM construction and the texture features
than SRM. Moreover, existing NN-based methods mainly train
the NN through supervised learning in a discriminative style,
whose objective is to minimize the mean square error (MSE)
between the predicted RM and the ground truth. However,
it has been demonstrated in [22], [23] that while the widely
used MSE metric in discriminative training methods enhances
the convergence speed of NN training, it degrades the NN’s
ability to capture the elaborately detailed features of the data,
resulting in blurred edges. As shown in Fig. 1, RM (especially
DRM) typically contains more detailed texture features. Neural
networks trained with MSE-based supervised learning methods
struggle to extract these detailed features.

The fundamental reason for the above challenges is the
misalignment between the generative problem attributes of
the RM construction and the discriminant methodology. RM
construction shows the characteristics of generative problems in
both data features and NN training methods, while the existing
sample-free NN-based methods use discriminant methods
to construct RM, which inevitably limits the construction
performance of RM. Specifically, in terms of data features,
neither the value nor location of the elements of the pathloss
to be predicted exist in the input environmental data, thus NN
is required to generate pathloss from the raw data. Moreover,
since the elements in the RM are not discrete values, it is almost
impossible to construct the RM by dividing a finite number of
hyperplanes to classify the elements in the environmental data
as a discriminative problem [24], [25]. Therefore, the use of
discriminant training methods to generate multiple hyperplanes
in the latent space using NN to predict pathloss will inevitably
lead to poor performance. Furthermore, the self-supervised
training method that uses data which is partially masked as
input to train NN to predict masked information is mainly used
in the training of generative models [26]. In the context of RM
construction, the data representing environmental information,
can be regarded as the RM whose pathloss is masked, and the
NN-based RM construction methods use these masked RM
data to recover the pathloss, which is a self-supervision training
method. Based on the above analysis, RM construction is a
generative problem, so from the perspective of the alignment
of the problem and the methodology, a generative method
should be used to effectively construct the RM. Moreover, the
generative training methods enable NN training both using
generative loss and MSE loss, where the NN’s capacity to
extract intricate texture features of RM can be enhanced.
Generative adversarial networks (GANs) have been extensively
studied in RM reconstruction; however, their potential is often
hindered by extreme instability during training. In contrast, the
diffusion model offers a novel solution to the RM reconstruction
problem. Geographic maps and RM contain abundant high-
frequency sharp edges. Directly feeding these into NN-based
models can result in erratic predictions, noise, and artifacts.
Diffusion models, however, demonstrate superior capability
in capturing this edge information and predicting conditions.
Therefore, to achieve high-performance RM construction by
taking advantage of the generative NN training method, in this
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paper, the RM construction problem is modeled as a conditional
generative problem, where a generative diffusion-based method,
named RadioDiff, is proposed to construct the RM effectively
2. The main contributions of this paper are as follows.

1) For the first time, the sampling-free RM construction
problem is modeled as a conditional generative problem,
where the location of the BS, and the environment
features are used as prompts for conditional generation. In
addition, theoretically, a detailed analysis of why the RM
construction is a generative problem from the perspective
of data features and NN training methods is provided
for the first time.

2) To the best of our knowledge, the diffusion-based
generative model is first used for effective RM con-
struction. Moreover, to enhance the performance and the
inferencing efficiency of the diffusion model, a decoupled
diffusion model is used in this paper.

3) To enhance the diffusion model’s capability to extract
dynamic environmental features, the prompts of the static
and dynamic environmental features are represented by
two matrices, respectively. Additionally, the adaptive fast
Fourier transform module is employed to enhance the
diffusion model’s ability to extract high-frequency infor-
mation resulting from dynamic environmental features
in the data.

4) The experimental results demonstrate that the proposed
RadioDiff achieves state-of-the-art (SOTA) RM con-
struction performance in all three metrics of accuracy,
structural similarity, and peak signal-to-noise ratio.

The remainder of this paper is organized as follows. We
first overview the related works of RM construction and give
preliminaries of the diffusion model in section-II, then the RM
construction problem is formulated and analyzed in section-
III. In section-IV the details of the proposed RadioDiff are
introduced, while in section-V the experimental results are
given. The section-VI concludes our work. The notations are
shown in Table I.

II. PRELIMINARIES AND RELATED WORK

A. Radio Map Construction

The construction of RM can be categorized into two primary
types: sampling-based and sampling-free. The sampling-based
methods primarily utilize SPM to obtain pathloss in specific
areas for interpolation. Although these methods are independent
of knowing environmental details and BS location, they require
pathloss measurement in the targeted regions for RM construc-
tion. Among these methods, the K-nearest neighbors technique
obtains RM data for other locations by weighted averaging the
pathloss values of the K nearest sparse measurement points
[14]. Additionally, local multinomial regression is commonly
employed in sampling-based RM construction. This approach
determines the pathloss at a current point by solving a least
squares problem that involves the pathloss values of nearby

2In this paper, the terms “diffusion model” and “denoise diffusion model”
are used interchangeably, both referring to methods for generating the required
data from noise input. The diffusion process involves diffusing the data into
noise, while the denoising process reconstructs the data from this noisy input.

TABLE I: Notation Table

Variables Definition
xt Noise data after t times of diffusion.
zt The feature map of xt.
ẑt The feature map predicted by NN.

µθ(·) The denoise NN with parameters θ.
w The parameters of AFT.
E VAE encoder.
D VAE decoder.
q(·) The probability of forward diffusion process.
p(·) The probability of inverse denoising process.
ϕ(·) Flattened operator.
ν(·) Trainable projection function.
F(·) The FFT operation.

F−1(·) The inverse FFT operation.
P The ground truth of RM.
P̂ The RM predicted by NN.
Hs The static obstacle distribution matrix.
Hd The dynamic obstacle distribution matrix.
R The location of BS.
C The prompt of the diffusion model.
I The identity matrix.

N (·, ·) The Gaussian stochastic distribution.
RN N -dimensional real space.
ϵ Gaussian stochastic variable as added noise.
T Maximum number of adding noises.

α, β, γ, δ Hyper-parameters.

sparse measurement points [15]. To further enhance the quality
of sampling-based RM construction, Kriging interpolation has
been proposed. This method treats RM construction as a
stochastic process modeling and prediction problem based
on a covariance function, thereby improving the accuracy of
RM construction [16].

The aforementioned sampling-based methods face two
significant challenges: dependence on SPM and low con-
struction accuracy [18], [19]. Consequently, sampling-free
RM construction methods, based on NN, have attracted the
attention of researchers. These methods typically require
knowledge of the environmental features, such as obstacle
locations, heights, and the positions of BS, to construct RMs.
A representative example is the RadioUNet, which is derived
from the classic U-Net framework used in image-to-image tasks
[18]. This approach leverages the U-Net framework, training
NN using the MSE between the generated RM and the ground
truth, yielding impressive results [18]. Inspired by RadioUNet
and the success of the Vision Transformer (ViT) led to the
development of Radionet, based on the transformer architecture
for RM construction [19]. Additionally, more complex NN
architectures, such as graph neural networks (GNN) [20], with
stronger feature extraction capabilities, have been employed in
RM construction. However, these approaches generally treat
sampling-free RM construction as a discriminative supervised
learning task. Although RME-GAN attempts to introduce
generative adversarial networks (GAN) methods into RM
construction, it is not sampling-free, as it relies on SPM within
the construction area [21]. Different from existing NN-based
RM construction methods, in this paper, the sampling-free RM
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construction is modeled as a conditional generative problem,
and a diffusion-based method is proposed which significantly
improves the RM construction performance.

B. Diffusion Model

The diffusion model is a category of generative models
based on Markov chains, that progressively restore data
through a learned denoising process. This model has emerged
as a strong competitor to the GAN in various generative
tasks, such as computer vision [27], and natural language
processing [22]. Moreover, diffusion models exhibit significant
potential in perception tasks, including image segmentation,
object detection, and model-based reinforcement learning (RL)
[28]. For example, in [29], the authors effectively utilized
diffusion model-based soft actor-critic algorithms for optimal
contract design. Besides, the authors in [30] innovatively
leveraged diffusion model-based deep deterministic policy
gradient algorithms for optimal Stackelberg game solutions. In
the diffusion model, there are two procedures which are the
forward diffusion procedure where the raw data is diffused into
noise, and the reversed denoise procedure where an NN is used
to remove the noise adding to the raw data, thus generating
raw data from noise.

1) Forward Diffusion Procedure: From a probabilistic
modeling standpoint, the essence of generative models lies
in training them to produce data x̂ ∼ pθ(x̂) that mirror the
distribution of the training data x ∼ pt(x). The denoising
diffusion probability model (DDPM) employs two Markov
chains: a forward chain that converts data into noise, and
a backward chain that reverts the noise to data. In a formal
context, given the data x0, the progression of a forward Markov
chain is realized by generating a series of stochastic variables
x1,x2, . . . ,xT , which evolve following the transition kernel
q(xt|xt−1). By employing the chain rule of probability in
conjunction with the Markovian property, it is possible to
deconstruct the joint probability distribution of x1,x2, . . . ,xT

given x0, expressed as q(x1, . . . ,xT |x0), into an appropriate
factorial form.

q(x1, . . . ,xT | x0) =

T∏
t=1

q(xt | xt−1). (1)

Thus, a forward noising process which produces latent xt

through x0 by adding Gaussian noise at time t ∈ {0, 1, · · · , T}
can be defined as follows.

q (xt | xt−1) = N
(√

1− βtxt−1, βtI
)
, (2)

where T and βt ∈ (0, 1) are the total number of diffusion
iterations and hyper-parameter of the variance scaling factor,
respectively. By setting αt = 1 − βt and ᾱt =

∏t
s=0 αs, the

distribution of xt condition on the x0 can be obtained as
follow.

q(xt | x0) = N (
√
ᾱtx0, (1− ᾱt)I), (3)

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (4)

where N (·, ·) is Gaussian distribution, I is identity matrix,
and ϵ ∼ N (0, I). In addition, Eq. (4) describes how the noisy
data xt is generated by combining the original input x0 with a

Gaussian noise term ϵ. The term
√
ᾱtx0 represents the scaled

contribution of the original data, while
√
1− ᾱtϵ represents

the amount of noise added at each step. As t increases, the
influence of the noise term grows, resulting in progressively
noisier data.

2) Reversed Denoise Procedure: For the data generation,
DDPM initially creates unstructured noise vectors from the
prior distribution, subsequently removing the noise through a
learnable Markov chain operated in reverse temporal order. To
achieve this, the reverse process can be formulated as follows.

pθ(xt−1|xt) = N (µθ(xt, t), βtI) (5)

where βt is a hyper-parameter, θ is the parameter of NN µθ.
Applying a trained NN µθ , we can iteratively denoise xt from
t = T to t = 1 as follows [28].

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

µθ(xt, t)

)
+ βtI. (6)

Remarkably, the second term in (6) serves the purpose of
obtaining the same distribution of xt−1 obtained through
denoising, particularly in terms of variance, as that is derived
through forward diffusion. If the second term of (6) is removed,
the xt−1 obtained by denoising is just equal to the mean of
which obtained via forward diffusion procedure. Strictly, the
scaling factor in the second term of (6) should be 1−ᾱt−1

1−ᾱt
βt

to ensure distribution consistency. However, as shown in [31],
setting the scaling factor to βt achieves the same performance
as setting it to 1−ᾱt−1

1−ᾱt
βt, while also reducing computational

complexity. Therefore, the scaling factor in the second term of
(6) is βt both for efficiency and effectiveness.

III. PROBLEM FORMULATION OF RM CONSTRUCTION

We consider the scenario where the RM needs to be
constructed within an area as a grid of size N×N , since the grid
is small enough, the pathloss in a grid is a constant, where the
RM can be represented by a matrix P . Within this region, there
is a BS with a single antenna and multiple static and dynamic
obstacles. The location of BS can be represented by a tuple R
as ⟨h, dx, dy⟩, where h, dx and dy is the height and coordinates
of the BS. The static obstacles have varying sizes and shapes
but are composed of the same surface material, thus reflecting
and diffracting electromagnetic waves in the same way, and
similar to [18], [19], [21] the pathloss is zero within their
interiors. The static obstacle information is represented by the
matrix Hs ∈ RN×N , where a value of hs

i,j = 0,∀hs
i,j ∈ Hs

indicates the absence of the static obstacle at the position of
i−th row and j−th column. Moreover, dynamic obstacles, such
as vehicles, impact electromagnetic wave propagation through
shielding, reflecting, and diffracting effects, similar to fixed
obstacles, however, due to their small size and short height,
dynamic obstacles cannot completely block the propagation
of electromagnetic rays in its direction. The information of
dynamic obstacles is represented by the matrix Hd ∈ RN×N ,
where the hd

i,j = 0,∀hd
i,j ∈ Hd indicates the absence of

dynamic obstacle at the position of i−th row and j−th column.
The objective of this paper is to train an NN µθ(·) with

parameters θ to predict the pathloss matrix P̂ ∈ RN×N
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Radio Map Diffusion Process

𝒙𝝉 𝒙𝒕 𝒙𝒕ା𝟏

Fig. 2: The diffusion procedure of RM, where in diffusion procedure the RM is diffused into noise, and in the denoising
procedure the RM is revealed from the noise and prompt.

based on the environmental features and location of the BS
to minimize the difference between the predicted P̂ and the
ground truth P . The difference can be measured by the criterion
function L(P̂ ,P ). Therefore, the problem of RM construction
can be formulated as

Problem 1.

min
θ

L(P̂ ,P ), (7)

s.t. P̂ = µθ(Hs,Hd,R), (7a)

The Problem 1 is a generative problem rather than a
discriminative problem, which can be analyzed from both the
data features and training method perspective. First, from the
perspective of data features, the pathloss needs to be predicted
from empty elements of the input data, as they do not exist
in the environmental matrixes Hd and Hs, which should be
generated by the NN µθ(·). Moreover, since the pathloss to
be predicted is not a discrete value, it is almost impossible
to construct the RM by dividing the finite hyperplane to
classify the nodes. However, from the perspective of statistical
learning, the fundamental of discriminative tasks, especially
supervised learning, is to let NN learn from the latent space
to the partitioning of hyperplanes to achieve data classification
[24]. Thus, the discriminative method inevitably limits the
performance of RM construction. Second, from the perspective
of training methods, the self-supervised training method is
mainly used by the generative model, where some elements of
the raw data are masked and an NN is trained to recover the
masked data through unmasked data in self-supervised learning
[26]. In the RM construction, the environmental information
⟨Hs,Hd⟩ can be regarded as P whose pathloss elements
are masked, and the NN needs to predict the masked pathloss
elements based on unmasked data that are ⟨Hs,Hd⟩. Therefore,
the NN used for RM construction is trained in a self-supervised
learning style. In addition, since the location of the BS R
affects the distribution of pathloss, the BS can be regarded as
a condition in self-supervision training, which means that the
construction of RM is a condition generative problem.

IV. DIFFUSION-BASED RM CONSTRUCTION

As analyzed in section-III the RM construction is a generative
problem, thus the SOTA generative diffusion model is used as
a backbone to construct the RM effectively.

A. Initial Processing

To improve the convergence speed, the pathloss matrix P is
encoded into a grayscale matrix through a process involving
logarithmic scaling, normalization, and subsequent quantization
[18]. Additionally, R is also represented as a grayscale matrix,
with a pixel value of 1 denoting the location of the AP, while
other pixels are set to 0. Subsequently, all the environment
information is encoded into a three-channel tensor as a prompt
tensor C = [Hs,Hd,R]. To further enhance the training
efficiency of the denoise diffusion model, similar to [28], we
initially train a variational autoencoder (VAE) to encode the
raw data into the latent space for training and testing [32]. The
encoder E module of the VAE encodes P as a latent vector
z0, where the noise is added to the z0 according to (3) for
training. After the noise is removed by the NN, the decoder
module D of the VAE is utilized to recover the RM from the
diffusion prediction vector ẑ0. Through the use of the VAE, the
denoise diffusion model only needs to remove the noise vector
added to z instead of the noise matrix originally added to P ,
thereby reducing the output space dimension of the diffusion
model to enhance training efficiency. Thus, in the following of
this paper, we use the latent vector z instead of x to denote
the image to be generated. It is essential to highlight that the
training of the VAE operates independently of the subsequent
training of the denoise diffusion model, where the VAE only
utilizes P for training the encoder E and decoder D trained
in an autoencoder style. Then the VAE’s parameters remain
static and do not change in the subsequent training procedure
of the diffusion model.

B. RadioDiff via Decoupled Diffusion Model

Although DDPM and latent diffusion models (LDM) have
shown considerable potential across various fields, their exten-
sive inference times and prolonged training durations motivate
the use of a decoupled diffusion model (DDM) [33] for further
enhancement. In DDM, the procedure of diffusing z0 to zt is
modeled as a two-stage continuous Markov process. First, z0
gradually diffuses into a 0 vector, then the noise ϵ is added
to this 0 vector to form zt. The distribution of zt can be
formulated as follows.

q (zt | z0) = N
(
γtz0, δ

2
t I
)
, (8)

where γt and δt are hyper-parameters, and δt is designed to
increase gradually over time while γt decreases. Compared
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Fig. 3: The illustration of the proposed RadioDiff framework. The VAE is employed to encode the RM into a latent vector, thereby reducing
the dimension of the input/output space for the denoise diffusion model. The framework incorporates a U-Net architecture, consisting of an
encoder and decoder, to facilitate the denoising process. The prompt is represented as a grayscale diagram with three channels, each channel
depicting the features of buildings, vehicles, and AP. After encoding the prompt, it is concatenated into the U-Net network, enabling the
model to generate RMs under environmental conditions.

to traditional diffusion models where the diffusion process
directly adds noise to the original input x0 or z0, the decoupled
diffusion model used in RadioDiff splits this process into two
distinct stages. In DDM, z0 first diffuses into a 0 vector,
which effectively decouples the contribution of the original
input from the added noise. This allows for a more controlled
diffusion process, as the noise ϵ is only introduced after z0
has been reduced to a 0 vector. As a result, DDM reduces
the variance in early diffusion steps and improves stability
during both training and inference. Furthermore, this decoupled
structure helps mitigate the prolonged inference time seen in
traditional diffusion models, enabling more efficient generation
in RadioDiff. Thus, according to [34], (8) can also be expressed
as the following differential equation.

dzt = ftzt dt+ gt dϵt, (9)

ft =
d log γt

dt
, (10)

g2t =
dδ2t
dt

− 2ftδ
2
t , (11)

Based on the above equations, inverting zt to z0 can be derived
as follows.

dzt =
[
ftzt − g2t∇x log q (zt)

]
dt+ gtdϵt, (12)

where ϵt is the Gaussian random variable in the reversed
diffusion, playing a similar role as the second term of (6). By
applying the decoupled diffusion strategy, the forward diffusion
process can be redefined as follows.

zt = z0 +

∫ t

0

ftdt+

∫ t

0

dϵt, (13)

z0 +

∫ t

0

ftdt = 0, (14)
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where z0 +
∫ t

0
ftdt describes the data attenuation process

and
∫ t

0
dϵt denotes the noise addition process. The function

ft is a differentiable function of t, and ϵt is the standard
Wiener process. Corresponding to equation (8), the conditional
distribution can be simplified as follows.

q(zt|z0) = N
(
z0 +

∫ t

0

ftdt, tI

)
. (15)

By using the conditional probability formula the reverse
sampling process, zt−∆t can be obtained as follows.

q (zt−∆t | zt, z0) = N

(
zt +

∫ t−∆t

t

ft dt

−∆t√
t
ϵ,

∆t(t−∆t)

t
I

)
. (16)

According to (16), to reverse the noisy zt into z0, which
corresponds to the feature map of RM P in this paper, the NN
only needs to predict two terms:

∫ t−∆t

t
ft dt and ϵ, since zt

is a known vector to denoise. As shown in Fig. 3, two U-Net
decoder networks are employed to predict

∫ t−∆t

t
ft dt and ϵ,

respectively. according to (13), the label for ϵ is straightforward
to obtain since the noise is added manually. However, the label
for
∫ t−∆t

t
ft dt must be obtained by solving the differential

equation (14). In the training procedure, the ground truth
is obtained by solving z0 +

∫ 1

0
ft dt = 0. For a simple

example where ft is equal to a constant c, the ft can be easily
determined as ft = c = −z0. For another scenario where the
value ft is in linear dependence with t that is ft = at + b,
solving the two parameters a and b using one equation is
infeasible. To address this, we should sample one parameter
from N (0, I) and substitute it into z0+

∫ 1

0
ft dt = 0 to solve

the other parameter. In this way, we concatenate a and b to
obtain the ground truth. The ground truths for other functions
can be determined similarly. Since different ft calculation
methods have different effects on the data quality generated
by diffusion, the coefficients of the equations for calculating
ground truth of ft can also be considered as hyper-parameters.

It should be emphasized that the above diffusion and
denoising processes are based on constraint-free RM construc-
tion. However, according to Problem 1, we need to achieve
conditional RM construction based on environmental and
BS location information, ensuring that the generated RM is
correlated with these features. To enable the NN to generate the
required RM based on the prompt C, we employ a conditional
generative model using an attention-based architecture. This
approach leverages the attention mechanism, allowing the
output of the NN to correlate with the given attention key-
value vectors K and V . Since the attention architecture
cannot directly handle two-dimensional data, an extractor NN
ν(·) projects the prompt C into an embedding space. This
embedding is then projected to the intermediate layers of the U-
Net through a cross-attention layer, implementing the attention
mechanism Attention(Q,K,V ) = softmax

(
QKT

√
d

)
· V as

follows.

Q = WQ · ϕ(zt), (17)
K = WK · ν(C), (18)

V = WV · ν(C), (19)

where ϕ(zt) is the flattened operator applied on the output
from the U-Net, which executes the function θ and applies
the transformation WV . Additionally, WQ and WK represent
trainable projection matrices [35]. The training loss function
can be represented as follows.

L = Ez,c,t,ϵ

[
∥ϵ− ϵθ∥2 + ∥f − fθ∥22

]
, (20)

ϵθ,fθ = µθ (zt;C, t) . (21)

C. Adaptive FFT Filter for DRM Enhancement

As shown in Fig. 1, RM exhibits numerous edge texture
features, especially in DRM, which generate substantial high-
frequency information in the frequency domain [36]. Although
conventional convolutional layers within the denoising U-Net
effectively extract features, they struggle to precisely capture
high-frequency components . As a result, neural networks (NNs)
based solely on traditional convolutional layers often produce
overly smooth RM outputs, leading to blurred representations
and suboptimal performance in dynamic environments.

To address this issue, as depicted in Fig. 3, an adaptive Fast
Fourier Transform (FFT) filter (AFT) module is introduced,
specifically to enhance the model’s capacity for extracting high-
frequency features. The AFT module operates by transforming
the 2D feature maps z, generated by the encoder with
spatial dimensions H × W and channel count C, from the
spatial domain to the frequency domain via the FFT operation,
represented as zc = F(z), where F denotes the FFT. To
improve the model’s ability to focus on relevant frequency
components, AFT incorporates a learnable weight matrix
w ∈ CH×W×C . This matrix is applied to the frequency-domain
features zc via the Hadamard product, w ⊙ zc. The learnable
weight matrix dynamically adjusts the model’s response to
different frequency distributions in the target data, emphasizing
important frequencies while attenuating irrelevant ones . This
adaptive spectral filtering allows the model to perform global
frequency adjustments based on data-driven relevance, ensuring
that high-frequency features are enhanced while less critical
frequencies are suppressed .

Following this adaptive filtering process, the modified
frequency-domain features are transformed back into the spatial
domain using the Inverse Fast Fourier Transform (IFFT). To
preserve key information and mitigate potential losses during
filtering, a residual connection is introduced between the
original feature map z and the output feature map . The
complete operation of the AFT module can be described as
follows:

z = z + F−1(w ⊙ zc), (22)

zc = F(z). (23)

V. EXPERIMENTS

A. Datasets

In this study, we evaluate the performance of the proposed
method using the RadioMapSeer dataset provided by the
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pathloss RM construction challenge [37]. The dataset consists
of 700 maps, each with unique geographic information (e.g.,
building data), with each map containing 80 transmitter
locations and their corresponding ground truth data. Each map
contains between 50 and 150 buildings. We selected 500 maps
for the training dataset and the remaining 200 maps for the test
dataset. There is no overlapping terrain information between
the training and test datasets.

The city maps include data from cities such as Ankara,
Berlin, Glasgow, Ljubljana, London, and Tel Aviv, sourced from
OpenStreetMap. In the dataset, both transmitter and receiver
heights are set at 1.5 meters, while building heights are set
at 25 meters. Each map is converted into a 256 × 256 pixel
morphological 2D image with binary pixel values (0/1), where
each pixel represents one square meter: ‘1’ for areas inside
buildings and ‘0’ for areas outside. Transmitter positions are
stored in a two-dimensional numerical format and depicted in
morphological images, with the transmitter’s pixel set to ‘1’
and all others to ‘0’. The transmitter power is set to 23 dBm,
and the carrier frequency is 5.9 GHz. To obtain a sufficiently
accurate RM as ground truth for training, the ground truth RM
in the dataset is constructed using Maxwell’s equations, where
the pathloss is calculated by the reflection and diffraction of
electromagnetic rays. The RMs that only consider the impact
of the static buildings on the electromagnetic rays are used as
the ground truth of SRM. Additionally, the RMs in the dataset
that consider the impact both of the static buildings and the
vehicles, which are randomly generated along the roads, are
used as the ground truth of the DRM, as shown in Fig. 1.

B. Metrics

To comprehensively evaluate the quality of RM construction,
we begin by adopting the parameters commonly used in
previous studies [18], namely NMSE and RMSE. Additionally,
we observe that the accurate generation of structural information
and details is a key objective in RM reconstruction tasks,
whereas the MSE index focuses on overall error and does
not directly address these specific requirements. Therefore, we
propose introducing structural similarity index measurement
(SSIM) and peak signal-to-noise ratio (PSNR) as additional
metrics in this paper. SSIM evaluates the preservation of
structural information to emphasize the accuracy of structural
detail reconstruction, while PSNR measures the signal-to-noise
ratio to assess the fidelity of RM construction, particularly with
respect to edge signal reconstruction.

1) MSE: MSE is calculated by averaging the squared
differences between the pixel intensities of the original and
final images as follows.

MSE =
1

NM
ΣM−1

m=0

N−1∑
n=0

e(m,n)2, (24)

where e(m,n) is the error difference between the ground truth
and the predicted RM, and M,N is the length and width of the
image, respectively. The normalized MSE (NMSE) is a scaled
version of MSE employed to assess the predictive accuracy of

TABLE II: Quantitative Comparison. Results in bold red and
underlined blue highlight the highest and second highest, respectively.
The ↑ indicates metrics whereby higher values constitute improved
outcomes, with higher values preferred for all other metrics.

Methods RME-GAN RadioUNet UVM-Net RadioDiff (Ours)

NMSE 0.0115 0.0074 0.0085 0.0049
RMSE 0.0303 0.0244 0.0304 0.0190
SSIM ↑ 0.9323 0.9592 0.9320 0.9691SRM

PSNR ↑ 30.54 32.01 30.34 35.13

NMSE 0.0118 0.0089 0.0088 0.0057
RMSE 0.0307 0.0258 0.0301 0.0215
SSIM ↑ 0.9219 0.9410 0.9326 0.9536DRM

PSNR ↑ 30.40 31.75 30.42 34.92

the RM construction, where rooted MSE (RMSE) is the rooted
MSE, which are defined as follows.

NMSE =
ΣM

m=1Σ
N
n=1(Ib(m,n)− I(m,n))2

ΣM
m=1

∑N
n=1 I

2(m,n)
, (25)

RMSE =
√
MSE (26)

2) SSIM: SSIM is a quality assessment metric inspired by
the human visual system. Since SSIM focuses on measuring
texture differences, and there are lots of high-frequency details
in RM, SSIM is suitable for evaluating the quality of the
generated results. We also believe that greater attention should
be given to the brightness of the signal radiation, the contrast
between the signal radiation and the surrounding area, and the
accuracy of geographic map in RM reconstruction. This aligns
with the SSIM metric, which evaluates three key components:
brightness, contrast, and structural information , which can be
calculated as follows.

l(x, y) =
2µX(x, y)µY (x, y) + C1

µ2
X(x, y) + µ2

Y (x, y) + C1
(27)

c(x, y) =
2σX(x, y)σY (x, y) + C2

σ2
X(x, y) + σ2

Y (x, y) + C2
(28)

s(x, y) =
σXY (x, y) + C3

σX(x, y)σY (x, y) + C3
(29)

where x, y correspond to two different input images and
µx, σ

2
x, σxy denote the mean and variance of x and the

covariance of x and y respectively. In addition, C1, C2, and
C3 are constants which are defined as follows.

C1 = (K1L)
2, C2 = (K2L)

2, C3 =
C2

2
,

where L represents the dynamic range of the data. Based on
these parameters, the structural similarity can be computed as
described as follows.

SSIM(x, y) =
(2µxµy + c1)(σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(30)

3) PSNR: The PSNR is defined as the ratio between the
maximum possible power of a signal and the power of
interfering noise that affects the fidelity of its representation.
PSNR is typically expressed in decibels (dB) and provides an
approximate measure of the perceived quality of reconstruction.
In image evaluation, a higher PSNR generally indicates better
image quality. For RMs, an accurate edge signal is crucial;
therefore, PSNR is used not only to assess overall image quality
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RME-GAN UVM-Net RadioUNet RadioDiff (Ours) Ground Truth

Fig. 4: The comparisons of constructed SRM on different methods.

but also to determine the quality of edge detail in the generated
RMs. PSNR can be calculated as follows.

PSNR = 10 log10

(
r2

MSE

)
(31)

where r is the maximal variation in the input image data.

C. Implementation

We implemented our RadioDiff framework using the PyTorch
framework. The training process is divided into two phases,
both utilizing an AdamW optimizer with a decaying learning
rate, starting from 5 × 10−5 and reducing to 5 × 10−6. In
the initial phase, the autoencoder is trained using RM images
from the entire dataset’s training set as ground truth. This
phase, which trains the VAE with z-channels set to 3 and
embedding dimension of 128, takes approximately 120 hours
on 4× NVIDIA A100 SXM GPUs with a batch size of 2. The
subsequent phase involves training the denoise diffusion U-net
model, which takes around 360 hours using 4× NVIDIA A100
SXM GPUs with a batch size of 64. In this implementation,

the input image size is 256× 256. The diffusion process uses
T = 1000 in training, and the loss function is l2-based with
an objective of predicting KC. The start distribution is set
to normal, and the perceptual weight is set to 0. Although
a larger batch size can achieve better training results and
higher training speed [26], the batch size in the first stage is
significantly smaller than that in the second stage. In the first
stage, both the input and output are raw image data, which
consumes substantial video memory. In contrast, during the
second stage, when training the diffusion model, the data is
processed in the latent space encoded by the VAE, thereby
reducing video memory consumption. Consequently, a larger
batch size can be employed to enhance training speed and
accuracy. This highlights the importance of using the VAE
to encode data into the latent space. The hyper-parameter for
the diffusion timesteps T is set to 500 for inference, and the
diffusion process is decoupled with ft defined as −z0.
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RME-GAN UVM-Net RadioUNet RadioDiff (Ours) Ground Truth

Fig. 5: The comparisons of constructed DRM on different methods.

D. Comparisons with SOTA Methods

To evaluate the proposed RadioDiff model, we compare
it with other SOTA methods. To ensure a comprehensive
comparison of the experiments, we compare the CNN-based,
GAN-based, and Mamba-based methods separately, which
represent the primary architectures used in the current RM
reconstruction task based on deep learning. For the detailed
parameter settings of the comparison model, we adhere to the
description provided in the article [18], [21], [38]. Additionally,
for fairness, the training and test data will be aligned with
RadioDiff. The following method is used to compare.

• RadioUNet [18]: RadioUNet is one of the most effective
sampling-free NN-based RM construction method, where
a convolutional U-Net is used as the backbone NN, and
the supervised learning is used to train the RadioUNet.
RadioUNet reconstructs the wireless propagation graph
using a simple yet effective network architecture that
learns environmental characteristics, making it one of the
most representative reconfiguration algorithms based on

reel machines.
• UVM-Net [38]: The training method and settings of UVM-

Net are same as RadioUNet, but the backbone network
is replaced by a convolutional layer with the latest SSMs
(State Space Sequence Models). SSMs are specifically
designed to handle long-sequence data and are particularly
well-suited for modeling long-range dependencies. SSMs
map the input sequence to a hidden state through a state
space model and predict the output based on this hidden
state. As a result, SSMs exhibit enhanced local feature
capture and efficient remote modeling capabilities. We
selected UVM-Net as the baseline to evaluate the perfor-
mance differences between this SSM-driven architecture
and traditional convolutional networks in the wireless
propagation graph reconstruction task.

• RME-GAN [21]: The SOTA NN-based RM construction
method, which uses a generative model cGAN to construct
RM. However, RME-GAN is sampling-based, it not only
uses environmental features but also uses the sampling
pathloss as the input to construct the RM. For a fair
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TABLE III: Ablation Study about AFT.

RadioDiff NMSE RMSE PSNR SSIM

w/o AFT 0.0067 0.0259 31.62 0.9465
w/ AFT 0.0049 0.0190 35.13 0.9691

comparison, the RME-GAN in this paper only uses
environmental features as input. As GAN models have
been at the forefront of generative model research in recent
years, they effectively showcase the unique capabilities and
challenges of generative adversarial networks in handling
RM reconstruction tasks.

1) Comparisons for SRM: For the quantitative comparison
on the RadioMapSeer-Test dataset for SRM scenarios is given
in the first part of Table II and Fig. 4, our model outperforms
others in error metrics, i.e., NMSE, RMSE, and structural
metrics, i.e., SSIM, PSNR, indicating that our predictions and
generated RM are more accurate. Notably, RadioDiff excels
in the PSNR metric, indicating that the RMs it generates have
clearer and sharper structural edges compared to other methods.
Furthermore, the qualitative comparison presented in Fig. 4
demonstrates that the RMs constructed by RadioDiff closely
resemble the ground truth, with well-defined edge features.
This precision stems from the diffusion model’s heightened
sensitivity to the high-frequency signals of edge information,
while the AFTs effectively enhance and isolate these signals.
In contrast, structures such as CNNs and Mamba are less
responsive to edge information, as is shown in RadioUNet
and UVM-Net since they show inaccuracies in radiation signal
positioning and edge blurring. As for the generative model
RME-GAN, which relies on adversarial strategies, it tends to
yield ambiguous and less precise results since it relies on the
sampling position measurements, so in the sampling-free RM
construction scenario it performs poorly.

2) Comparisons for DRM: As shown in the second part
of Table II and Fig. 5, the quantitative comparison on the
RadioMapSeer-Test dataset for DRM scenarios is given. In
DRM scenarios, the models must account for additional
dynamic environmental factors. Despite a general decline in
performance, the second part of Table II shows that RadioDiff
consistently delivers the best results across all indicators. As
shown in Fig. 5, the RadioDiff model exhibits enhanced
sensitivity to dynamic environmental factors such as vehicles,
whereas the RME-GAN, RadioUNet, and UVM-Net models
struggle with these elements, often resulting in significant
blurring and distortion. This further highlights that RadioDiff
has stable high performance under more challenging conditions,
particularly in scenarios characterized by complex environments
and overlapping signals.

E. Ablation Study

In this section, we analyze the impact of the AFT on
the performance of the RadioDiff model. The qualitative
results in Fig. 6 vividly illustrate the visual disparity between
radio patterns generated with and without employing the AFT.
By incorporating the AFT, our model exhibits an enhanced
capability to accurately detect and represent edge signals.
This improvement is particularly noticeable when dealing

w/o AFT w/ AFT Ground Truth

w/o AFT w/ AFT Ground Truth

Fig. 6: Ablation study about AFT. The qualitative results demonstrate
that incorporating the AFT further enhances the model’s sensitivity
to edge signals. This leads to RM images with more accurate edges
and more robust results when multiple signals overlap.

with scenarios involving signal superposition, as evidenced
by images produced by our model equipped with AFTs that
possess increasingly sharper edges. Furthermore, Table III
presents quantitative comparison results, demonstrating that a
better performance can be achieved through the utilization of
the AFT.

F. Limitations and Discussion

Although this paper proposes a pioneer exploration of uti-
lizing diffusion models for RM construction, and the proposed
RadioDiff achieves SOTA performance, the issue of efficiency
remains a key consideration for such a large generative model-
based method. Table IV presents a comparison of the inference
time and memory usage between the RadioDiff model and
alternative models, showing that the diffusion model requires
more resources and has a longer inference time than other
methods. However, it should be emphasized that although
the proposed RadioDiff is more time-consuming than other
NN-based methods, the inference delay is still less than one
second, which remains acceptable for dynamically constructing
RM. For training data, RadioDiff uses the same dataset as
other NN-based methods, and no limitations regarding its
access to training data were identified in the experiment. In
addition, although VAE needs to be trained separately before
RadioDiff’s formal training, this is due to LDM being used for
the RM reconstruction task for the first time. In subsequent
research, the relevant pre-trained weights of VAE can be directly
used without re-training, which will significantly streamline
future research efforts. Moreover, techniques such as NN
compression and efficient inference methods like denoising
diffusion implicit models (DDIM) [39] can be leveraged
to notably enhance efficiency, raising a trade-off between
performance and efficiency, which stands as a promising
direction for future research.

Furthermore, it is noteworthy that almost all existing
NN-based RM construction methods, including this paper,
concentrate on predicting pathloss from a BS to a specific
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TABLE IV: Inference Time and Memory Consuming. Results
in bold red and underlined blue highlight the highest and second
highest, respectively.

Method Average time (s) Memory consuming (MB)

RME-GAN 0.042 2923
UVM-Net 0.095 8738
RadioUNet 0.056 3927

RadioDiff (Ours) 0.6 6062

location, known as one-to-any (O2X) RM. However, there
is also another type of RM that is any-to-any (X2X) RM
scenario, which aims at obtaining pathloss between any two
points through their positions. X2X RM construction poses a
challenge with sampling-based approaches, as these methods
typically require a fixed BS location to estimate pathloss of
any other position to the fixed BS. In contrast, by adopting
a sampling-free RM construction approach in this paper and
incorporating the location of BS as input for the diffusion
model as part of the prompt, it is feasible to predict pathloss
between any two points by adjusting the prompt of the BS
position, thereby enabling the construction of X2X RM.

VI. CONCLUSION

In this paper, we have proposed RadioDiff, a diffusion-
based RM generative model to effectively construct the RM.
By incorporating various techniques, including AFTs and the
decoupled diffusion model, RadioDiff can construct accurate
and sharp RM effectively. Extensive experiments demonstrate
the qualitative and quantitative superiority of the proposed
RadioDiff. As the first application of diffusion models to RM
construction tasks, RadioDiff sets a new benchmark for future
technological advancements. In future work, we will focus on
how to leverage the diffusion model to generate the environment
features based on the sparse RM information.
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