
1

RingSFL: An Adaptive Split Federated Learning
Towards Taming Client Heterogeneity

Jinglong Shen, Student Member, IEEE, Nan Cheng, Member, IEEE,
Xiucheng Wang, Student Member, IEEE, Feng Lyu, Member, IEEE, Wenchao Xu, Member, IEEE,

Zhi Liu, Member, IEEE, Khalid Aldubaikhy, Member, IEEE, and Xuemin (Sherman) Shen, Fellow, IEEE

Abstract—Federated learning (FL) has gained increasing attention due to its ability to collaboratively train while protecting client data
privacy. However, vanilla FL cannot adapt to client heterogeneity, leading to a degradation in training efficiency due to stragglers, and is
still vulnerable to privacy leakage. To address these issues, this paper proposes RingSFL, a novel distributed learning scheme that
integrates FL with a model split mechanism to adapt to client heterogeneity while maintaining data privacy. In RingSFL, all clients form
a ring topology. For each client, instead of training the model locally, the model is split and trained among all clients along the ring
through a pre-defined direction. By properly setting the propagation lengths of heterogeneous clients, the straggler effect is mitigated,
and the training efficiency of the system is significantly enhanced. Additionally, since the local models are blended, it is less likely for an
eavesdropper to obtain the complete model and recover the raw data, thus improving data privacy. The experimental results on both
simulation and prototype systems show that RingSFL can achieve better convergence performance than benchmark methods on
independently identically distributed (IID) and non-IID datasets, while effectively preventing eavesdroppers from recovering training
data.

Index Terms—Federated Learning, Split Learning, Heterogeneity, Ring Topology, Straggler Effect.

✦

1 INTRODUCTION

R ECENTLY, machine learning (ML) techniques have been
widely applied to various domains such as computer

vision [1], natural language processing [2], and speech
recognition [3] due to their remarkable representation and
learning capabilities [4]. Typically, ML necessitates a large
amount of data and computational resources to train a
model with satisfactory generalization performance. Conse-
quently, centralized learning has been extensively adopted,
where a central server owns all the data and trains a model
with abundant computing resources. Nevertheless, in many
applications, training data is generated by users, and up-
loading such raw data to the cloud server may compromise
user privacy. Moreover, as the computational and storage
capabilities of the user devices increase exponentially, it
becomes feasible to leverage the local resources for training
tasks. In 2016, Google proposed federated learning (FL) [5],
which has been gaining increasing attention. With FL, the
ML models are trained over user devices while keeping data
localized. Rather than raw data, local updated parameters

• J. Shen, N. Cheng, and X. Wang are with the School of
Telecommunications Engineering, Xidian University, Xi’an,
China. E-mail: jlshen@stu.xidian.edu.cn, dr.nan.cheng@ieee.org,
xcwang 1@stu.xidian.edu.cn

• F. Lyu is with the School of Computer Science and Engineering, Central
South University, Changsha, China. E-mail: fenglyu@csu.edu.cn

• W. Xu is with the Department of Computing, Hong Kong Polytechnic
University, Hongkong, China. E-mail: wenchao.xu@polyu.edu.hk

• Z. Liu is with the Department of Computer and Network Engineering,
The University of Electro-Communications, Chofugaoka, Japan. E-mail:
liu@ieee.org

• K. Aldubaikhy is with the Department of Electrical Engineering, Qassim
University, Buraydah, Saudi Arabia. E-mail: khalid@qec.edu.sa

• X. Shen is with the Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, Canada. E-mail: sshen@uwaterloo.ca

(Corresponding author: Nan Cheng.)

are uploaded to the server for aggregation, which prevents
data leakage.

Despite the potential of FL in edge networks, there
remain numerous challenges [6], [7]. One of the most signif-
icant is the high heterogeneity among the clients involved
in training [8]. This heterogeneity can manifest in terms of
computational capability and battery level, both of which
can have a significant impact on the efficiency of the FL
system [9]. For instance, the different training times among
clients due to uneven computational capabilities can lead
to the straggler effect, where stragglers can bottleneck the
efficiency of the FL system. Additionally, clients may have
different battery levels, and the training process can drain
the batteries of clients with lower levels, causing them to
quit the FL system and making their training data inacces-
sible.

Another primary concern of FL is user privacy since
sensitive information can still be revealed from model pa-
rameters/gradients by a third-party entity or the server.
In [10], an optimization-based approach is proposed to
recover user data from a single sample of gradients. This
method involves the generation of random dummy inputs
and labels locally, followed by the minimization of the dis-
tance between the dummy and actual gradients to recover
the user data. Subsequently, [11] extends this approach by
using a similar optimization method to achieve recovery of
user data from the batch’s average gradients. These works
highlight the need for further improvements in the data
privacy of FL.

In this paper, we propose a novel FL scheme, RingSFL,
which integrates FL with a model Split mechanism to
address the above issues of FL. Specifically, clients form
a ring topology where adjacent clients can communicate

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3309633

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 11:14:20 UTC from IEEE Xplore. Restrictions apply.

2

with each other through wireless links. The server assigns
a propagation length (the number of neural layers to be
processed during each forward and backward propagation)
to each client according to the system heterogeneity, and
the forward and backward propagation of each client starts
from itself and traverses the ring topology under the con-
straint of propagation length to complete the training. After
a round of training, each client has an updated model with
different layers trained by data from different clients, i.e., a
blended model, and the models are uploaded to the server for
aggregation. RingSFL not only preserves the capability of
FL to utilize the distributed computational power but also
enhances data privacy since an eavesdropper can hardly re-
cover the data from the blended model. Moreover, RingSFL
can better adapt to the system heterogeneity by allocating
computational loads according to the characteristics (such
as computational capability or battery power) of different
clients, which can significantly mitigate the straggler effect
and improve the training efficiency of the system. In sum-
mary, the main contributions of this paper are as follows.

• Novel adaptive and privacy-preserving FL scheme: A
novel FL scheme, termed RingSFL, is proposed. This
scheme adaptively distributes the overall training
load through a model split mechanism, thereby mi-
grating the computational load from weak computa-
tional power clients to strong computational power
clients, thus alleviating the straggler effect of vanilla
FL, improving the computational efficiency of the
system, and reducing the training time. Addition-
ally, RingSFL not only does not transmit user data,
but also does not transmit any complete model up-
dates. All model updates uploaded to the server are
blended through the model split mechanism, thus
achieving enhanced privacy preservation.

• Improved Model Performance: The splitting of the
model at the logical level in RingSFL, through the
assignment of propagation lengths, has been ob-
served to lead to the emergence of overlapping lay-
ers that are trained by multiple clients in parallel.
These overlapping layers have a higher frequency
of gradient aggregation, resulting in more reliable
gradients. Consequently, a higher model accuracy
can be attained by utilizing an adaptive learning
rate to augment the step size of the gradients of the
overlapping layers.

• Simulation and Prototype System: The efficacy and
performance of the proposed RingSFL scheme were
evaluated using real datasets in both a simulation
environment and a prototype system containing two
PC nodes and three Raspberry Pi nodes. The ex-
perimental results validate the effectiveness of the
proposed RingSFL scheme.

The remainder of the paper is organized as follows. Section
2 provides the background and related work of the paper.
Section 3 describes the proposed RingSFL, including the
design of the training process, model split scheme, model
aggregation scheme, improvement based on overlapping
layers, and the discussion on the privacy enhancement.
In section 4, extensive experimental results are given to
evaluate RingSFL, followed by limitations and future works

discussed in section 5. Finally, concluding remarks are given
in section 6.

2 BACKGROUND AND RELATED WORK

2.1 Federated Learning
FL [5] aims to train a high-quality centralized model by
leveraging the data distributed across numerous devices
and addressing the issue of data silos. The process begins
with the server initializing a global model and sending it to
the participating clients. Each client trains the model using
its own local dataset and sends the updated model parame-
ters to the server. The server aggregates the received model
parameters to create the new global model, which is then
distributed back to the participating clients. The process is
iteratively repeated until the global model converges.

Client Heterogeneity in FL: For client heterogeneity,
an effective solution is to design a novel user scheduling
mechanism. By scheduling high-quality clients (e.g., with
sufficient computing resources, communication resources,
stable communication connections, etc.) to participate in
training, the straggler effect caused by low-quality clients is
mitigated. The commonly used scheduling schemes include:
reinforcement learning [12], long-term perspective schedul-
ing [13], joint optimization [14], etc. But there may be a
lot of valuable data on straggler, and not scheduling them
would result in the absence of these data. Another effective
approach is to design novel resource allocation strategies to
mitigate client heterogeneity, such as allocating additional
resources to low-quality clients [15], [16]. Nevertheless, most
of the work focuses on allocating communication resources
or computational resources on the server, and still lacks a
method to efficiently allocate computational resources on
the client side.

Privacy Protection in FL: Several research works have
made essential efforts to further improve the privacy of
FL. One popular approach is differential privacy, which is
known for its low-complexity advantage and better privacy
is achieved by adding white noise to the model [17], [18],
[19], [20]. However, the addition of white noise usually re-
sults in degraded model performance, necessitating further
investigation into the trade-off between model performance
and privacy. Cryptographic mechanisms, such as secure
aggregation studied in [21], [22], that use an encryption
mechanism to prevent any party, including the server, from
accessing each client’s uploaded model, are becoming more
mainstream. Other approaches are generating samples in-
stead of using actual samples for training [23] and designing
blockchain-based FL systems to enhance the FL system’s
security [24], [25]. However, cryptographic mechanisms
generally impose additional computational burdens, which
may not be tolerated by low-resource clients and lead to a
more severe straggler effect.

2.1.1 Benefits and Limitations
FL has been demonstrated to achieve accuracy similar to
centralized learning on IID datasets. Additionally, FL offers
the advantage of parallel training, resulting in relatively
low training time consumption. Nevertheless, FL is still
susceptible to client heterogeneity, leading to the straggler
effect. Existing solutions may lead to the absence of valuable

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3309633

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 11:14:20 UTC from IEEE Xplore. Restrictions apply.

3

data [12], [13], [14] and lack a way to efficiently allocate com-
putational resources on the client side [15], [16]. Motivated
by this, RingSFL achieves the allocation of training load
based on client capabilities, enabling stragglers to partici-
pate in training with a smaller training load, thus avoiding
the loss of valuable data from stragglers. Moreover, Fl still
has the risk of privacy leakage, and existing solutions may
sacrifice global model accuracy [17], [18], [19], [20] or lead to
intolerable computational burden [21], [22], [23], [24], [25].
Conversely, RingSFL enhances privacy while obtaining bet-
ter global model accuracy without additional computation.
It is worth noting that RingSFL is also compatible with
mechanisms such as differential privacy and encryption.

2.2 Split Learning
The method of Split Learning (SL) has been introduced in
[26] to improve the efficiency and security of distributed
learning systems. In SL, the model is split into two parts and
trained by a client and a server. In the training phase, the
client inputs the local training data into the local model to
perform forward propagation until the split layer’s output
is obtained. Afterward, the client transmits the split layer’s
output and associated labels to the server. The server feeds
the client’s output into the local model to proceed with the
forward propagation and predict the model output. Lastly,
the server estimates the loss value by using the model
output and labels, then starts the back propagation process.

In the vanilla SL architecture described above [26], the
server cannot directly access the raw data of clients, and
the complete model parameters are not transmitted to the
server. The only information exchanged between clients and
the server is the output of the split layer from clients to the
server, and the gradient of the split layer from the server to
clients. However, this vanilla SL approach necessitates the
transmission of labels, thus risking data leakage. To address
this issue, a U-shaped structure is proposed in [27], wherein
the deepest and shallowest layers are kept in the client and
the middle layers are kept in the server, allowing the labels
to remain in the client for training and thus improving
system security. Further, random perturbation techniques
are proposed in [28] to prevent label information leakage.
Additionally, [29] proposes broadcasting an average gradi-
ent at the split layer during back propagation, thus enabling
scalable parallel SL.

2.2.1 Benefits and Limitations
Vanilla SL reduces the client training load by splitting the
model, rendering it more appropriate for edge network
deployment in comparison to vanilla FL. Nevertheless,
vanilla SL’s inability to train in parallel leads to linearly
increasing training latency with the number of clients and
unsatisfactory convergence on Non-IID datasets [26], [27].
While some studies [28], [29] have tried to enable parallel
training in SL, it still faces convergence challenges on Non-
IID datasets. Additionally, we highlight that although SL
reduces the client’s training burden, each client still has an
equal training workload and cannot distribute it according
to its capability. Consequently, we introduce RingSFL, which
allocates training load based on the client’s capabilities,
thereby improving model accuracy significantly on the Non-
IID dataset.

2.3 Integration of Federated Learning and Split Learn-
ing

Recently, a novel approach to FL has been proposed, which
seeks to integrate FL with SL in order to leverage their
respective strengths and create a new architecture for dis-
tributed learning that is suitable for edge network envi-
ronments. SplitFed, as described in [30], is a pioneering
and successful example of this approach. The framework
necessitates the inclusion of two servers, a main server for
splitting training and a fed server for aggregating models.
SplitFed splits the neural network between the clients and
the main server. The clients then use SL with the main server
to update their local model parameters. Subsequently, the
clients transmit the updated local model parameters to the
fed server for aggregation, resulting in a new global model
and the commencement of the next round of training.

In [31], [32], the authors introduced local loss signals into
SplitFed, allowing the client’s subnetwork to train directly
using local losses without receiving loss gradients from the
server, reducing the communication cost of the system. In
[33], the authors integrate FL with SL in an edge unmanned
aerial vehicle (UAV) network. During training, some of the
drones in the system perform SL with the base station,
while the remaining drones perform FL, and finally all
the model parameters are aggregated to get an updated
global model. By controlling the training method (FL or SL)
of the UAVs, a stronger adaptation to the edge network
environment is achieved. FedSL is proposed in [34] for
distributed training of recurrent neural networks (RNNs).
The authors split an RNN into multiple sub-networks and
distribute them to different clients for training. During local
training, the sub-networks on different clients communicate
with each other to capture potential dependencies between
data on different clients. Finally, all clients send their sub-
networks to the server for aggregation. In [35], each client
has its corresponding edge server, and the clients perform
split learning with their edge servers. After local training,
the model parameters on the edge server are sent to the
parameter server for aggregation. In the field of pre-training
large models, integrating FL with SL can also play an active
role. FedBert, as proposed in [36], successfully deploys the
pre-training task of large models at the edge of the network
by splitting the large model into many smaller models.
Different from previous discussed works that integrate SL
with horizontal FL, PyVertical [37] effectively combines SL
with vertical FL, enabling the training of neural networks on
vertically split data features between multiple clients while
keeping the original data on the owner’s device.

2.3.1 Benefits and Limitations

Integrating FL with SL retains their respective benefits,
such as reduced client training loads in comparison to FL
and enhanced parallel training capability and convergence
performance than SL. However, these existing approaches
assign the same training load to all clients, resulting in
ineffective use of computational resources. Besides, they
frequently depend on multiple servers that are challenging
to implement in edge network conditions [30], [31], [32],
[33], [34], [35]. In this paper, we effectively implement
the training load allocation based on client capabilities by

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3309633

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 11:14:20 UTC from IEEE Xplore. Restrictions apply.

4

TABLE 1
Notations Used in This Paper.

Notation Explanation

U Client set containing clients participating in training.
ui Client indexed by i.
N Number of clients participating in training.
Di Local dataset of ui.
Di Dataset size of Di.
Ci Computational power of ui.
Wt Global model at communication round t.
xi Mini-batch sampled from Di.
yi Corresponding label of xi.
Li Propagation length.
ai Aggregation weight.
x̄i Feature map of xi.

loss fn Loss function.
gt
i Gradient of Wt

i .
pi Model split ratio.
M Computation volume to complete mini-batch training.

W̃t
i,(j,k)

Back propagation process of Wt
i,(j,k)

.

Wt
i,(j,k)

Layer j to k of ui’s local model at
communication round t.

Ui,(j)
The set of clients who propagate through

the j-th layer of ui’s local model.

e′i
The probability that the communication link

between ui and ui−1 is eavesdropped.

ei
The probability that the communication link

between ui and server is eavesdropped.

controlling the propagation length of clients. Differing from
existing methods, our approach utilizes only one server
for training, promising wider applicability in edge network
scenarios.

3 PROPOSED RINGSFL SCHEME

3.1 Overview

Feature MapComputational Power
Client 1

Client 0
Computational Power

Computational Power
Client N-2

Computational Power
Client N-1

Uploa
d Loca

l M
od

el
Download Global Model

Fig. 1. The architecture of RingSFL with N clients.

The structure of the proposed RingSFL system is de-
picted in Fig. 1. This system consists of a server for model
aggregation and a client set U = {u0, u1, · · · , uN−1} of

N clients for cooperative training. Each client ui has a
training dataset Di of size Di, and the computational power
of ui is denoted by Ci. The clients form a ring topology,
where adjacent clients can communicate with each other
through direct communication technologies such as device-
to-device (D2D) communication [38]. The clients can also
communicate with the server for model downloading and
uploading as in FL. It is worth noting that the construction
of the ring topology will have a significant effect on the
performance. Nevertheless, in this paper, we focus on the
fundamental properties of RingSFL and then arbitrarily set
the ring topology, leaving the investigation on ring topology
construction as future work. The notations used in this
paper are summarized in Table 1.

As illustrated in Fig. 2, during each communication
round, multiple forward and backward propagation of a
client is conducted cooperatively by all clients along the
ring topology. To this end, the server assigns a propagation
length to each client based on its capabilities, which is used
to determine the number of neural layers each client needs
to process during each forward and backward propagation.
Subsequently, the forward propagation traverses the ring
topology, and each client is responsible for propagating the
number of neural layers specified by the propagation length
over its local model. Similarly, the backward propagation is
performed by each client to compute the gradients of the
corresponding layers. As the example in Fig. 2, if there are
three clients, denoted by u0, u1, and u2, and the propagation
lengths are set to 2:1:3, respectively. Then, the model of u0

is trained traversing u0 → u1 → u2 for forward propaga-
tion and u2 → u1 → u0 for backward propagation (blue
arrows). Similarly, the model of u1 is trained traversing
u1 → u2 → u0 for forward propagation and u0 → u2 → u1

for backward propagation (green arrows), and the model
of u2 is trained traversing u2 → u0 → u1 for forward
propagation and u1 → u0 → u2 for backward propagation
(red arrows). It is worth noting that the training process of
different clients are independent and are conducted simul-
taneously. Finally, the trained local models are transmitted
to the server for aggregation. This process is repeated until
the model converges, as detailed in Algorithm 1.

3.2 RingSFL Training Process
Without loss of generality, we present the detailed training
process of RingSFL for an arbitrary number of clients in
this subsection. The local model owned by client ui in
communication round t are denoted by Wt

i with W layers.
For a given mini-batch (xi, yi) sampled from Di, the output
of the model is denoted by Wt

i (xi) = Wt
i,(0,W−1)(xi) =

Wt
i,(W−1)(Wt

i,(W−2)(· · ·Wt
i,(0)(xi))), where Wt

i,(j,k) de-
notes layers j to k of model Wt

i , Wt
i,(j) denotes layer

j of model Wt
i , xi denotes the input samples, and yi

denotes the corresponding labels. The backward propaga-
tion can be represented in the similar way: W̃t

i (grad) =
W̃t

i,(0,W−1)(grad) = W̃t
i,(0)(W̃t

i,(1)(· · · W̃t
i,(W−1)(grad))),

where W̃t
i denotes the backward propagation process of Wt

i .

3.2.1 Initialization
In the beginning, each client uploads its state information
(Ci, Di) to the server, where Ci and Di are the computa-

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3309633

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 11:14:20 UTC from IEEE Xplore. Restrictions apply.

5

Forward propagation of client 0’s data.

Transmission of client 0’s feature map.

Forward propagation of client 1’s data.

Transmission of client 1’s feature map.

Forward propagation of client 2’s data.

Transmission of client 2’s feature map.

Backward propagation of client 0’s loss.

Transmission of client 0’s gradient.

Backward propagation of client 1’s loss.

Transmission of client 1’s gradient.

Backward propagation of client 2’s loss.

Transmission of client 2’s gradient.

Client 0

Client 1Client 2

Propagation Length: 2

Propagation Length: 1Propagation Length: 3

Forward Propagation

Client 0’s data

Calculate Client 0’s loss.

Calculate Client 2’s loss. Ca
lcu

lat
e C

lie
nt

 1’
s l

os
s.

Cl
ien

t 1
’s

da
taClient 2’s data

Client 0

Client 1Client 2

Propagation Length: 2

Propagation Length: 1Propagation Length: 3

Backward Propagation

Client 0’s loss.

Client 2’s loss. Cl
ien

t 1
’s

lo
ss

.

Fig. 2. Forward and backward propagation processes for RingSFL with 3 clients. A multilayer perceptron (MLP) containing 6 fully connected layers
is trained, and the propagation length is set to: L0 : L1 : L2 = 2 : 1 : 3.

tional power and dataset size of ui, respectively. The server
determines the propagation length Li = Ci∑N−1

j=0 Cj
W and

aggregation weight ai = Di∑N−1
j=0 Dj

for each client based on

their state information. Finally, the server dispatches (Li, ai)
to the corresponding client ui along with the initialized
global model W0. The derivation of the propagation length
is described in detail in subsection 3.3. And the aggregation
weights are set in the same way as FedAvg [5], as this is not
the focus of this paper.

3.2.2 Forward Propagation

In each communication round, forward and backward prop-
agation are conducted multiple times, and the training
processes of different clients are executed in parallel. The
forward propagation process of client ui can be divided into
three phases: Starting Phase, Relay Phase, and Stop Phase.

• Starting Phase: Client ui samples a mini-batch of
input data (xi, yi) from its local dataset Di, feeds xi

into local model to get the middle feature map x̄i =
Wt

i,(0,Li−1)(xi). Then, ui sends (x̄i, lstop) to the next
client ui+1 in the ring topology, where lstop = Li − 1
denotes the index of the output layer.

• Relay Phase: For the next clients in the
ring {ui+1, · · · , uN−1, u0, · · · , ui−1}, their
job is to relay the feature maps from the
previous client. Specifically, for each client
uj ∈ {ui+1, · · · , uN−1, u0, · · · , ui−1}, they receive
(x̄i, lstop) from the previous client uj−1, feed it into
the local model Wt

j,(lstop+1,lstop+Lj)
to obtain a new

feature map x̄i = Wt
j,(lstop+1,lstop+Lj)

(x̄i) and send
(x̄i, lstop + Lj) to the next client uj+1.

• Stop Phase: Finally, client ui will receive the cor-
responding model output x̄i from ui−1, and the
loss = loss fn(x̄i, yi) is calculated based on it.

3.2.3 Backward Propagation

The backward propagation process is similar to the forward
propagation and can be divided into three phases: Starting
Phase, Relay Phase, and Stop Phase.

• Starting Phase: Client ui takes the loss calcu-
lated locally as the start point of backward propaga-
tion, sends (grad, lstop, ai) to the previous client ui−1

along the ring topology, where grad = loss, lstop =
W − 1, and ai =

Di∑N−1
j=0 Dj

.

• Relay Phase: For the remaining clients in the ring
{ui−1, · · · , u0, uN−1, · · · , ui+1}, their job is to relay
the gradients from the previous client. Specifically,
for each client uj ∈ {ui−1, · · · , u0, uN−1, · · · , ui+1},
they receive (grad, lstop, ai) from uj+1, back prop-
agate Lj layers in Wt

j,(lstop−Lj+1,lstop)
to get the

corresponding gradient gt
j,(lstop−Lj+1,lstop)

, which
will be weighted by ai and cached. Then, uj

sends (gt
j,(lstop−Lj+1), lstop − Lj , ai) to uj−1, where

gt
j,(lstop−Lj+1) = W̃t

j,(lstop−Lj+1,lstop)
(grad).

• Stop Phase: Finally, the backward propagation
will stop at client ui, and the gradients are weighted
by its aggregation weight ai and cached in all clients
separately. Based on the gradients cached locally,
each client updates their local model.

3.2.4 Model Aggregation

In each communication round, the trained local model pa-
rameters Wt+1

i are uploaded to the server for aggregation.
Since the gradients are already weighted during the train-
ing process, model aggregation can be achieved by direct
averaging: Wt+1 = 1

N

∑N−1
i=0 Wt+1

i , which will be detailed
in section 3.4. RingSFL performs multiple communication
rounds until the model converges. It can be seen from the
forward/backward propagation that the local model of a
client is trained by all clients, which leads to a blended

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3309633

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 11:14:20 UTC from IEEE Xplore. Restrictions apply.

6

0 2 4 6 8 10 12 14

Time / T

0
1
2
3

C
lie

nt
 In

de
x

Forward propagation of client0's data
Backward propagation of client0's loss

Forward propagation of client1's data
Backward propagation of client1's loss

Forward propagation of client2's data
Backward propagation of client2's loss

Forward propagation of client3's data
Backward propagation of client3's loss

Fig. 3. Propagation flow of RingSFL with C0
C

= 0.1, C1
C

= 0.2, C2
C

= 0.3, C3
C

= 0.4, p0 = 0.1, p1 = 0.1, p2 = 0.1, p3 = 0.7.

0 2 4 6 8 10 12 14

Time / T

0
1
2
3

C
lie

nt
 In

de
x

Forward propagation of client0's data
Backward propagation of client0's loss

Forward propagation of client1's data
Backward propagation of client1's loss

Forward propagation of client2's data
Backward propagation of client2's loss

Forward propagation of client3's data
Backward propagation of client3's loss

Fig. 4. Propagation flow of RingSFL with C0
C

= p0 = 0.1, C1
C

= p1 = 0.2, C2
C

= p2 = 0.3, C3
C

= p3 = 0.4.

model. This poses increasing difficulty in training data
reconstruction from the eavesdropped parameters.

3.2.5 Client Dropout Handling
In RingSFL, due to the instability of wireless communication
or client battery depletion, etc., there may exist some clients
suddenly dropping out of training in the middle of the
training process, resulting in the ring topology disconnec-
tion. Fortunately, since the server acts as the controller of
the system, it can re-organize the ring before the following
round of training. This limits the impact of client dropping
to only one training round instead of the whole training
process. Specifically, when a client suddenly drops from
the ring, the server will immediately detect which client is
dropped. Then, the server will stitch the ring back together
from the breakpoint (i.e., control the two clients at the
breakpoint to re-establish the communication connection)
and reconfigure propagation lengths for each client that is
still online in order to continue the training, while the client
that drops out will be ignored.

3.3 Model Split Scheme
In order to minimize the training time in RingSFL, model
splitting is implemented at the logical level by allocating
different propagation lengths Li to each client. This subsec-
tion details the procedure for determining Li.

To minimize the training time, the training load of each
client should match its computational power. We denote
the computation required to complete training for a mini-
batch (including forward propagation, backward propaga-
tion and parameter updates) by M GFLOPs, then the total
computation required to complete a mini-batch of training
for all users in the system is MN . And the computation
undertaken by ui can be denoted by piMN , where pi
denotes the ratio of the training load assigned to ui to the
total training load,

∑N−1
i=0 pi = 1. Then, the computation

time consumed by ui to complete the training of a mini-

batch is
piMN

Ci
.

Since there are N clients in the system, the computation
time consumed by the straggler to complete the training

of a mini-batch is max

{
p0MN

C0
,
p1MN

C1
, · · · ,

pN−1MN

CN−1

}
.

To minimize the time consumption of the straggler, we
formulate the following optimization problem.

min
p0,··· ,pN−1

max

{
p0MN

C0
,
p1MN

C1
, · · · ,

pN−1MN

CN−1

}
(1)

s.t.
N−1∑
i=0

pi = 1, (1a)

0 ≤ pi ≤ 1, ∀i = 0, · · · , N − 1. (1b)

Problem (1) is a MinMax problem. By introducing a new
variable m, it can be rewritten as

min
p0,··· ,pN−1,m

m (2)

s.t.
piMN

Ci
−m ≤ 0, ∀i = 0, · · · , N − 1, (2a)

N−1∑
i=0

pi = 1, (2b)

0 ≤ pi ≤ 1, ∀i = 0, · · · , N − 1. (2c)

Now, the original problem has been transformed into an
ordinary linear programming problem, and it is easy to find
the optimal solution as

p∗i =
Ci∑N−1

j=0 Cj

, ∀i = 0, · · · , N − 1,

m∗ =
MN∑N−1
j=0 Cj

.

(3)

The solution reveals that the optimal p∗i should be equal
to the ratio of the computational power Ci∑N−1

j=0 Cj
. Since the

training load of each client can be controlled by the number
of locally trained neural layers, we set the propagation
length to Li = p∗iW = Ci∑N−1

j=0 Cj
W . However, in practice,

the W layers of the model are of different sizes, and p∗iW is
generally not an integer. Therefore, the server should adjust
the propagation length Li accordingly. This will affect the
total training time, and we leave the details for future work.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3309633

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 11:14:20 UTC from IEEE Xplore. Restrictions apply.

7

To clearly show the relationship between the total train-
ing time and the training load of each client, Fig. 3 illustrates
the computation flow of each client in a 4-client RingSFL
system with C0

C = 0.1, C1

C = 0.2, C2

C = 0.3, C3

C = 0.4 and
p0 = 0.1, p1 = 0.1, p2 = 0.1, p3 = 0.7, where C =

∑N−1
i=0 Ci

denotes the total computational power of all clients in the

system. The unit of time axis in the figure is set to T =
M

2C
.

The figure shows that although client 3 has more computa-
tional power than the other clients, it becomes a straggler in
training due to the excessive training load. As a result, the
time cost of the system to complete a mini-batch training is
bottlenecked by this client, who spends the longest training
time. Therefore, the computational load should be optimally
allocated to suppress the straggler effect so that the training
time is minimized.

Fig. 4 shows the computation flow of each client in a
4-client RingSFL system with p0 = C0

C = 0.1, p1 = C1

C =
0.2, p2 = C2

C = 0.3, p3 = C3

C = 0.4. From the figure, it can
be seen that the straggler effect is significantly mitigated by
optimally allocating pi. The computation time consumed by
each client is equal, and the time consumed by the system to
complete a mini-batch training is reduced to 8 units of time.

3.4 Model Aggregation Scheme

The server receives local models from clients, which are then
aggregated. Due to the blended model, a revised model
aggregation scheme in RingSFL is necessary because the
conventional FedAvg algorithm [5] is inapplicable.

Different from FedAvg, the weighting in RingSFL is
achieved by each client during the training process. The
aggregation weight ai is transferred among clients along
with backward propagation, and the computed gradients
are weighted by it. To keep the formulation concise, we
assume that each client’s local dataset has only one mini-
batch and only one epoch is trained for each communication
round, while the results of multiple mini-batch updates can
be easily generalized. Since each neural layer of a client may
have multiple propagation flows passing through it, we use
Ui,(j) to denote the set of clients that propagate through
Wi,(j), where

⋃N−1
i=0 Ui,(j) = {0, · · · , N − 1}. Then, the local

training result for ui in the t-th communication round is

Wt+1
i =



Wt
i,(0) −

∑
j∈Ui,(0)

ηajg
t
j,(0)

...
Wt

i,(k) −
∑

j∈Ui,(k)
ηajg

t
j,(k)

...
Wt

i,(W−1) −
∑

j∈Ui,(W−1)
ηajg

t
j,(W−1)


, (4)

where gt
j,(k) is the gradient of the k-th layer calculated

based on the data from uj ’s dataset in communication round
t, aj is aggregation weight of uj , and η is learning rate.
Server can aggregate by simply averaging after receiving
Wt+1

i , ∀i = 0, · · · , N − 1. The new global model obtained
by server aggregation is

Wt+1 =
1

N

N−1∑
i=0

Wt+1
i

=



Wt
i,(0) −

η

N

∑N−1
i=0

∑
j∈Ui,(0)

ajg
t
j,(0)

...

Wt
i,(k) −

η

N

∑N−1
i=0

∑
j∈Ui,(k)

ajg
t
j,(k)

...

Wt
i,(W−1) −

η

N

∑N−1
i=0

∑
j∈Ui,(W−1)

ajg
t
j,(W−1)


.

(5)

Since
⋃N−1

i=0 Ui,(k) = {0, · · · , N − 1}, we can derive that∑N−1
i=0

∑
j∈Ui,(k)

ajg
t
j,(k) =

∑N−1
i=0 aig

t
i,(k). Then, (5) can be

rewritten as

Wt+1 =



Wt
i,(0) −

η

N

∑N−1
i=0 aig

t
i,(0)

...

Wt
i,(k) −

η

N

∑N−1
i=0 aig

t
i,(k)

...

Wt
i,(W−1) −

η

N

∑N−1
i=0 aig

t
i,(W−1)



= Wt −
η

N

N−1∑
i=0

ai



gt
i,(0)

...
gt
i,(k)

...
gt
i,(W−1)


= Wt −

η

N

N−1∑
i=0

aig
t
i.

(6)

The formulation of the aggregation result in (6) is similar
to FedAvg [5], except that the learning rate is reduced by N
times. To compensate for the discounted learning rate, we
can manually multiply the learning rate by the number of
clients participating in the training.

3.5 Overlapping Layers Can Improve Model Perfor-
mance
As discussed previously, since each client has different com-
putation resources, it has different propagation lengths and
further leads to the presence of overlapping layer. We first
give the definition of overlapping layer and then discuss
the properties of overlapping layer and their impact on the
performance of the global model.

Overlapping Layer: If a neural layer is propagated by
multiple clients’ propagation flow, we call that layer an
overlapping layer.

As illustrated in Fig. 5, we consider two clients col-
laboratively training a multilayer perceptron (MLP) with 6
fully connected layers using RingSFL. The local models of
client 0 and client 1 are denoted by Wt

0 and Wt
1, and the

propagation lengths are set to L0 = 2 and L1 = 4. The

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3309633

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 11:14:20 UTC from IEEE Xplore. Restrictions apply.

8

Overlapping Fully Connected Layers

Client 0

Client 1

Propagation Length: 2

Propagation Length: 4

Forward propagate 2 fully connected
layers with client 0’s data.

Forward propagate 2 fully connected
layers with client 1’s data.

Transmission of feature maps output
by the 2nd fully connected layer of

client 0’s model.

Forward propagate 4 fully connected
layers with client 1’s data.

Forward propagate 4 fully connected
layers with client 0’s data.

Transmission of feature maps
output by the 4th fully connected

layer of client 1’s model.

Logits of Client 0

Logits of Client 1 Loss calculation

Loss calculation

Fig. 5. Forward propagation processes for RingSFL with 2 clients. A mul-
tilayer perceptron (MLP) containing 6 fully connected layers is trained,
and the propagation length is set to: L0 : L1 = 2 : 4.

propagation flow of client 0 is illustrated by the blue arrows,
which propagate through Wt

0,(0,1) and Wt
1,(2,5), respectively,

and the propagation flow of client 1 is illustrated by the
red arrows, which propagate through Wt

1,(0,3) and Wt
0,(4,5),

respectively. It can be noted that Wt
1,(2,3) is contained by

both Wt
1,(2,5) and Wt

1,(0,3), i.e., the propagation flows of both
client 0 and client 1 pass over Wt

1,(2,3) (with both blue and
red arrows passing over them in Fig. 5), so we call Wt

1,(2,3)
the overlapping fully connected layers in this RingSFL sys-
tem. During backpropagation, the gradients of both client
0 and client 1 for the 3-rd and 4-th fully connected layers
will accumulate to the overlapping fully connected layers,
which means that the gradients of both client 0 and client
1 for the 3-rd and 4-th fully connected layers will be ag-
gregated at each backpropagation. Since the overlapping
fully connected layers have a higher aggregation frequency
compared to other layers, their gradients are more capable
of driving the parameters of the overlapping fully connected
layers toward the global optimum, which can effectively
improve the performance of the global model.

Considering that the overlapping layer has a higher
aggregation frequency and its gradient is better than that
of other layers, we try to increase the step size of the
overlapping layer when updating parameters (or increase
the learning rate of the overlapping layer) to better utilize
the properties of the overlapping layer, and thus propose
RingSFLv21. Specifically, we multiply the learning rate of
the overlapping layer with the number of overlaps of the
layer so that the learning rate is proportional to the number
of overlaps to adjust the update step size of the overlapping
layer. If the j-th layer of the local model of the client ui is
an overlapping layer, the parameter update process for this
overlapping layer Wi,(j) can be formulated as

Wt
i,(j) = Wt

i,(j) − η|Ui,(j)|
∑

k∈Ui,(j)

akg
t
k,(j), (7)

where Ui,(j) denotes the set of clients whose propagation
flow passes through Wi,(j), the number of clients in this set
is denoted by |Ui,(j)|, and η denotes the default learning
rate. For example, in Fig. 5, the overlapping fully connected
layers Wt

1,(2,3) has two overlaps (with propagation flows of

1. RingSFL without learning rate adjustment is referred to as RingS-
FLv1.

two clients passing through), and then its learning rate is
2η. By improving the update method of the overlapping
layer, we find that the performance of the global model
is effectively improved, which is discussed in detail in the
experimental section.

3.6 Privacy Enhancement

2 3 4 5 6 7 8 9 10
Number of Clients

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Pr
ob

ab
ili

ty
 o

f P
riv

ac
y

Le
ak

ag
e

e=0.04
e=0.08
e=0.12
e=0.16
e=0.20

e=0.24
e=0.28
e=0.32
e=0.36
e=0.40

Fig. 6. Impact of the number of clients and the probability of communi-
cation links being eavesdropped on the probability of privacy leakage.

While a theoretical proof of privacy is beyond the scope
of this paper, this subsection will provide a brief overview
of the privacy-enhancing features of RingSFL. There are
two potential routes to accomplish the attack on RingSFL:
Reassembling blended models: reassembling the complete
model belonging to each client by eavesdropping on all
blended models sent to the server and obtaining the sen-
sitive information carried in the reassembled model. Model
inversion attack: recovering the training data of each client
by eavesdropping on the D2D communication links be-
tween the clients. We discuss these two cases respectively.

3.6.1 Reassembling Blended Models
According to existing research [10], [11], an attacker must
obtain the complete model parameters or gradients to re-
cover client data, and cannot recover from only partial
or broken models. Since clients upload blended models
to the server, an attacker (an eavesdropper or a malicious
aggregation server) must reassemble these blended models
based on propagation lengths to obtain the complete mod-
els belonging to each client. However, in RingSFL system,
there are usually overlapping layers where multiple clients’
model parameters are accumulated, and recovering individ-
ual clients’ model parameters from these overlapping layers
is quite difficult, so RingSFL still provides enhanced privacy.

A special case worth noting is that no overlapping layer
exists in the RingSFL system when the propagation lengths
of all clients are equal, and the possibility of privacy leakage
exists at this point. We further discuss the probability of
privacy leakage in this case. Using ei to denote the proba-
bility that the communication link between ui and the server
is eavesdropped, the probability of privacy leakage can be
expressed as

P =
∏

i=0,··· ,N−1

ei. (8)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3309633

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 11:14:20 UTC from IEEE Xplore. Restrictions apply.

9

It can be seen from (8) that the privacy leakage prob-
ability is influenced by the eavesdropping probability ei
and the number of clients N . Fig. 6 illustrates the effect
of different eavesdropping probabilities and the number
of clients on the privacy leakage probability, where e =
ei, ∀i ∈ 0, · · · , N − 1. It can be seen that the probability
of privacy leakage decreases exponentially with the increase
in the number of clients. Even with a high eavesdropping
probability on each link (e.g., e = 0.4), the leakage probabil-
ity still decreases rapidly to a value close to zero. This means
that when the number of clients in the RingSFL system is
large enough, a high level of security can be maintained
even in particularly extreme cases (equal propagation length
per client with a high eavesdropping probability).

3.6.2 Model Inversion Attack
Since RingSFL introduces D2D communication links be-
tween clients to transmit feature maps, an eavesdropper
may try to recover the original sensitive data of the client
from the eavesdropped feature maps through model in-
version attack techniques. We therefore discuss the privacy
performance of RingSFL under different model inversion
attack settings. As discussed in [39], there are three main
settings for the model inversion attack: white-box setting,
black-box setting, and query-free setting, and we discuss
each of these three settings.

White-box Setting: In this setting, there are two main
prerequisites for a successful attack: 1. the attacker needs to
know the model structure and parameters of the attacked
client; 2. the attacker needs to obtain the feature maps of
the local dataset of the attacked client. Once these two
prerequisites are satisfied, the attacker will first randomly
generate dummy data samples and feed them into a model
with the same parameters as the attacked client to obtain the
feature maps of these dummy data samples. Subsequently,
the attacker optimizes the generated dummy data samples
by minimizing the distance between the feature maps of
the dummy data samples and the feature maps of the real
samples (obtained from the attacked client), and finally
recovers the real data samples.

In the white-box setting, the attacker needs to obtain
the local model parameters and the output feature maps
of the attacked client. For attackers without eavesdropping
capabilities (e.g., malicious participating clients or malicious
servers), there is no privacy leakage problem in this setting
because malicious participating clients do not have access to
the local model parameters of other clients, and malicious
servers do not have access to the client’s output feature
maps. However, RingSFL still has limitations for attackers
with strong eavesdropping capabilities and may not be
effective against white-box attacks. An attacker can perform
a white-box attack by eavesdropping on the communication
link between the attacked client and the server to obtain
the local model parameters of the attacked client, and by
eavesdropping on the D2D communication link between
the attacked client and its neighboring clients to obtain the
feature maps of the samples in the training dataset of the at-
tacked client. One potential defense scheme [40] is to reduce
the mutual information between the feature maps and the
real samples by adding regular term to the local objective
function at training time, thus making it more difficult for

the attacker to recover the real samples. This approach solely
involves modifying the client’s local objective function (or
local loss function), thereby ensuring no disruption to the
RingSFL training process. However, it is important to note
that decreasing the mutual information may adversely affect
the accuracy of the global model. Thus, achieving an optimal
balance between global model accuracy and privacy perfor-
mance necessitates careful consideration and trade-offs.

Black-box Setting: In this setting, a successful attack
requires that the attacker is able to input locally generated
dummy data samples into the local model of the attacked
client for inference and obtain the corresponding feature
maps. Once this prerequisite is satisfied, the attacker ran-
domly generates dummy data samples and inputs them
into the local model of the attacked client for inference,
and obtains the feature maps of the dummy data samples.
Subsequently, the attacker uses these dummy data samples
and their corresponding feature maps as a dataset to train a
model that can replicate the behavior of the attacked client’s
local model. Eventually, by using this trained model, the
model inversion attack can be executed using the same
approach as in the white-box setting.

However, during the training process of RingSFL, the
clients only access local datasets and do not receive any
external datasets nor provide query services, and the at-
tacker cannot input the generated dummy data samples
into the local model of the attacked client. Therefore, the
prerequisites for a successful attack cannot be met, making
RingSFL effective against model inversion attacks under
black-box settings.

Query-free Setting: In this setting, a successful attack
requires that the attacker must have knowledge of the
local dataset distribution of the attacked client. This setting
assumes that the attacker cannot directly query the local
model of the attacked client or access its internal parame-
ters. Instead, the attacker relies on generating dummy data
samples with the same distribution as the local dataset of
the attacked client. The attacker then uses these generated
samples to train a model that mimics the behavior of the
attacked client’s local model. Finally, based on this trained
model, the attacker performs a model inversion attack using
the same approach as in the white-box setting.

However, during the training process of RingSFL, the
clients neither transmit their local datasets nor the distri-
bution information of their local datasets. Therefore, the
necessary prerequisites for a successful attack cannot be
met, allowing RingSFL to effectively resist model inversion
attacks under query-free setting.

4 EXPERIMENTAL RESULTS

In this section, we assess the efficacy of the proposed scheme
and analyze the performance improvements. We commence
by introducing the experimental configuration and then
present the experimental results.

4.1 Experimental Setup

4.1.1 Platforms
Our proposed RingSFL scheme was evaluated in both a
simulated environment and a real prototype system.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3309633

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 11:14:20 UTC from IEEE Xplore. Restrictions apply.

10

Algorithm 1: RingSFL Training Process

1 Server initializes model parameters W0 with W
layers;

2 Clients upload state information (Di: dataset size,
Ci: computational power) to the server;

3 Server calculates propagation length and
aggregation weight for clients:
Li = piW = Ci∑N−1

j=0 Cj
W ; ai =

Di∑N
j=1 Dj

;

4 Server sends (W0, Li, ai) to each client ui;
5 for each round t from 0 to T − 1 do
6 for each client ui parallelly do
7 Set local model Wt

i = Wt;
8 for each epoch from 0 to E − 1 do
9 for each batch (xi, yi) in Di do

10 BatchUpdate(Wt
i , (xi, yi));

11 end
12 end
13 Upload training results Wt+1

i ;
14 end
15 Server aggregates parameters:

Wt+1 = 1
N

∑N−1
i=0 Wt+1

i ;
16 Server sends Wt+1 to each client;
17 end

Algorithm 2: BatchUpdate(Wt
i , (xi, yi))

1 x̄i = xi, lstop = −1;
2 for uj in [ui, · · · , uN−1, u0, · · · , ui−1] do
3 x̄i = Wt

j,(lstop+1,lstop+Lj)
(x̄i);

4 lstop = lstop + Lj ;
5 Send (x̄i, lstop) to uj+1;
6 end
7 loss = loss fn(x̄i, yi);
8 grad = loss, lstop = W − 1;
9 for uj in [ui−1, · · · , u0, uN−1, · · · , ui] do

10 grad = W̃t
j,(lstop−Lj+1,lstop)

(grad);
11 Cache gradients ai · gt

j,(lstop−Lj+1,lstop)

calculated in previous step;
12 lstop = lstop − Lj ;
13 Send (grad, lstop, ai) to uj−1;
14 end
15 Each client ui updates their local model Wt

i based
on the gradients cached;

Simulation Environment: The software used in the sim-
ulation was written in Python 3.9.12, and PyTorch 1.11.0 was
employed for model construction and training to ensure
compatibility with the software environment of the proto-
type system. In the simulation, a ring topology was formed
by 5 clients, who then conducted RingSFL with a server.
The model performance of RingSFL was evaluated using
different models and both IID and Non-IID datasets.

Prototype System: As depicted in Fig. 7, our prototype
system consists of three Raspberry Pi nodes (ARM Cortex-
A72 @ 1.5GHz 6.4W) as weak computational power clients
and two PC nodes (11th Gen Intel(R) Core(TM) i7-11700 @
2.50GHz 65W) as strong computational power clients. A lap-

Raspberry
node4

Raspberry
node3

Raspberry
node2

PC
node0

PC
node1

Server

PC node1

PC node0

Raspberry
node2

Raspberry
node4

Raspberry
node3

Server

D2D communication link

Fig. 7. Prototype system of RingSFL with 2 PC nodes and 3 raspberry
Pi nodes.

top is utilized as a parameter server for model aggregation.
Each device operates at the 5440 MHz band with a channel
of 40 MHz bandwidth, allowing D2D TCP rates of 135 Mbps
with a standard deviation of 5.83. Through the prototype
system, we mainly assess the capability of RingSFL to adapt
to the client heterogeneity in real-world settings in terms of
training time and energy consumption. As it is difficult to
measure the energy consumption in the prototype system,
we instead capture each client’s actual CPU occupation time
and convert it into consumed energy by multiplying it by
the single-core full power. Additionally, we evaluate the
effect of D2D communications on the proposed RingSFL
scheme.

4.1.2 Datasets and Models
Datasets: The experiments utilize the widely-used MNIST
[41] and CIFAR10 [42] datasets. Specifically, MNIST consists
of 70,000 square (28x28=784 pixel) grayscale handwritten
digital images, divided into 10 categories (60,000 for training
and 10,000 for testing); Cifar10 consists of 60,000 square
(3x32x32=3072 pixel) 3-channel color images, divided into
10 categories (50,000 for training and 10,000 for testing).
Each client’s local dataset has the same number of samples.
Furthermore, to evaluate the effect of the dataset distribu-
tion on RingSFL, experiments are conducted using both IID
and non-IID data. Specifically, the Non-IID dataset is con-
structed by assigning each client a sub-dataset containing
only two categories.

Models: To validate the performance of our scheme,
we employ mainstream networks for evaluation, including
ResNet18 [43], VGG16 [44], AlexNet [45], and LeNet-5 [41].

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3309633

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 11:14:20 UTC from IEEE Xplore. Restrictions apply.

11

To ensure the model converges to the desired accuracy, we
initialize the model parameters prior to training. Specif-
ically, the Conv2d layer is initialized using the Kaiming
normal method. The weights of the BatchNorm2d layer are
initialized to 1, and the bias is initialized to 0. The weights of
the Linear layer are initialized using a Gaussian distribution
with a mean of 0 and standard deviation of 0.01, and the
bias is initialized to 0.

4.1.3 Implementation

TABLE 2
Implementation Parameters.

Model Dataset Learning Rate (IID / Non-IID) Block Num

ResNet18 CIFAR10 0.1 / 0.04 10
VGG16 CIFAR10 0.01 / 0.0015 16
AlexNet MNIST 0.003 / 0.003 17
LeNet-5 MNIST 0.02 / 0.02 12

In our experiments, we use vanilla FL [5], vanilla SL
[26], and SplitFed [30] as benchmarks. For each experiment,
five clients (2 PC nodes u0, u1 and 3 raspberry Pi nodes
u2, u3, u4) are included for 100 training rounds. In each
round, each client iterates two epochs on their local dataset.
Since vanilla SL has no parameter aggregation process,
the whole training process cannot be directly divided into
rounds. Therefore, in our experiments, when vanilla SL
updates local epoch num× batch num steps, we treat it as
a round for a fair comparison with other algorithms2. SGD
optimizer is used for stochastic gradient descent to optimize
the model. For the convenience of the logical level model
splitting, we pre-divide models into blocks. Specifically,
ResNet18 is divided into 10 blocks, VGG16 is divided into
16 blocks, AlexNet is divided into 17 blocks, and LeNet-5
is divided into 12 blocks. The complete training parameters
are presented in Table 2.

4.2 Results and Discussion

We first evaluate the convergence performance of RingSFL
and the impact of overlapping layers on model accuracy in
the simulation environment. Subsequently, the impact of the
D2D communication rate on RingSFL and the efficiency of
RingSFL in terms of training time and energy consumption
are evaluated in the prototype system. Finally, we validate
the privacy enhancement achieved by RingSFL. Due to
space limitations, we mainly discuss the performance of
RingSFL with ResNet18 as an example. Please refer to the
tables for the experimental results of other models.

4.2.1 Convergence Performance
This experiment serves to validate the convergence perfor-
mance of RingSFL, with SplitFed, vanilla FL, and vanilla
SL used as benchmarks for comparison. The propagation
lengths of RingSFL were set to L0:L1:L2:L3:L4=6:1:1:1:1.

As illustrated in Fig. 8, RingSFLv2 achieved the highest
model accuracy on the CIFAR10 (IID) dataset after the same

2. local epoch num: The number of times the client traverses the
local dataset in each communication round. batch num: The number
of batches the local dataset can be divided into.

communication rounds, compared to the considered bench-
marks. RingSFLv1 performed slightly worse than RingS-
FLv2, yet still converged to a higher model accuracy than
vanilla FL and SplitFed. This is attributed to the fact that
in RingSFL, gradients accumulated on overlapping layers
are aggregated in each batch of training, thus leading to a
higher capability to optimize the parameters of overlapping
layers towards the global optimum, and consequently, better
model performance. Furthermore, Fig. 9 demonstrates the
effect of different data distributions on the convergence
performance of RingSFL when training on the CIFAR10
(Non-IID) dataset. It can be observed that RingSFLv2 still
maintained the best model accuracy on the Non-IID dataset
compared to the considered comparison algorithms. RingS-
FLv1 performed similarly to vanilla FL, while vanilla SL
and SplitFed had difficulty in converging on the Non-IID
dataset. This indicates that RingSFL is able to adapt well to
the non-IID data distribution.

The results demonstrate that RingSFL has the most opti-
mal convergence performance in comparison to the bench-
marks evaluated. Notably, the distinction in performance
between RingSFLv2 and RingSFLv1 further accentuates the
significance of the overlapping layers in RingSFL, which
will be discussed in greater detail in the subsequent subsec-
tion. The training results of the other models are presented
in Table 3.

4.2.2 Effect of Overlapping Layers
In order to evaluate the impact of overlapping layers on
model accuracy, we trained models with different propa-
gation length configurations in RingSFLv2 and gradually
made the propagation length distribution uneven to in-
crease the number of overlapping layers. Specifically, we
set the propagation length to L0:L1:L2:L3:L4={2:2:2:2:2,
3:2:2:2:1, 3:3:2:1:1, 4:3:1:1:1, 5:2:1:1:1, 6:1:1:1:1} in each ex-
periment to observe the effect of increasing the number of
overlapping layers on model accuracy.

As demonstrated in Fig. 10, the effect of overlapping
layers on the model accuracy is evident. The more unevenly
the propagation lengths are allocated, the more overlapping
layers there are, and the higher the model accuracy is. This
phenomenon can be interpreted as the gradient reliability
of overlapping layer is higher. As discussed in [46], due to
the distributed characteristic, the optimal solution of the
local objective function of each client is not consistent with
the optimal solution of the global objective function. Thus,
the gradients computed by each client in the process of
local training will not optimize the local model towards
the global optimum. In the RingSFL training process, the
overlapping layers accumulate the gradients from different
clients, which makes the gradients on the overlapping layer
more reliable and has more tendency to optimize towards
the global optimum. The training results of other models are
presented in Table 4. This conclusion was further validated
on the Non-IID dataset, as illustrated in Fig. 11. It can be
seen that this conclusion still holds for training on the Non-
IID dataset.

4.2.3 Effect of Client Dropout
We further evaluated the impact of client dropout on model
accuracy. In this experiment, we randomly dropped two

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3309633

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 11:14:20 UTC from IEEE Xplore. Restrictions apply.

12

Fig. 8. Testing convergence of
ResNet18 on CIFAR10 (IID) under
different algorithms.

Fig. 9. Testing convergence of
ResNet18 on CIFAR10 (Non-IID)
under different algorithms.

Fig. 10. Testing convergence of
ResNet18 on CIFAR10 (IID) under
different propagation lengths.

Fig. 11. Testing convergence of
ResNet18 on CIFAR10 (Non-IID)
under different propagation lengths.

0 20 40 60 80 100
Communication Round

0

20

40

60

80

100

Ac
cu

ra
cy

 /
%

vanilla FL (Client Dropout)
vanilla FL
RingSFLv2 (Client Dropout)
RingSFLv2

90 95 100
75

80

85

Fig. 12. Testing convergence of
ResNet18 on CIFAR10 (IID) with
randomly two clients dropping out in
each communication round.

0 20 40 60 80 100
Communication Round

0

20

40

60

80

100

Ac
cu

ra
cy

 /
%

vanilla FL (Client Dropout)
vanilla FL
RingSFLv2 (Client Dropout)
RingSFLv2

Fig. 13. Testing convergence of
ResNet18 on CIFAR10 (Non-IID)
with randomly two clients dropping
out in each communication round.

Fig. 14. Testing convergence of
ResNet18 on CIFAR10 (IID) under
different D2D communication rates.

Fig. 15. Time cost of ResNet18 in
a communication round under differ-
ent D2D communication rates.

Fig. 16. Time cost of ResNet18 in
a communication round under differ-
ent algorithms.

Fig. 17. Energy consumption of dif-
ferent devices in a communication
round.

0 50 100 150 200 250 300
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

S
im

ila
rit

y

RingSFL
vanilla FL

Fig. 18. Cosine similarity between
reconstructed data and original
data.

clients during each communication round and subsequently
restored the ring topology to continue training under the
server’s scheduling. The CIFAR10 dataset was used, with
the ResNet18 model trained, and the initial propagation
lengths set to 6:1:1:1:1.

Fig. 12 showcases the training results when the local
datasets are IID. It can be observed that the accuracy of the
global model experiences a slight degradation when client
dropout occurs during training. This is because the system
loses access to the dataset of the dropped clients, resulting
in a reduced amount of data available for training and
subsequently impacting the overall accuracy of the global
model. However, in comparison to vanilla FL, RingSFL still
maintains its advantage in model accuracy. Furthermore, the
effect of client dropout on RingSFL is smaller than that on
vanilla FL. In addition, Fig. 13 presents the training results
when the local datasets are Non-IID. Remarkably, RingSFL
continues to exhibit its advantage and achieves a higher
accuracy for the global model, even in the presence of Non-
IID datasets.

4.2.4 Effect of D2D Communication

In order to investigate the impact of inter-user D2D com-
munications on the RingSFL system, we varied the rates
of the D2D communication links to 135 Mbps, 40 Mbps,

15 Mbps, 10 Mbps, and 5 Mbps, respectively, while keep-
ing the communication rates between the client and the
server (both RingSFL and vanilla FL) fixed at 135 Mbps.
Subsequently, we evaluated the convergence of the sys-
tem under these different conditions. Additionally, we con-
ducted experiments on the CIFAR10 dataset with propaga-
tion lengths of L0:L1:L2:L3:L4=4:3:1:1:1 using the ResNet18
model structure to further explore the impact of inter-user
D2D communications. However, it is important to note that
the results of this subsection are not absolute, as different
model structures, datasets, and propagation lengths may
lead to different outcomes.

The convergence curves of RingSFL at different D2D
communication rates are depicted in Fig. 14. As the
D2D communication rate decreases, the time required for
RingSFL to reach the same accuracy increases accordingly.
Nevertheless, it can be observed that as long as the D2D
communication rate is not too bad, RingSFL can reach
convergence in a shorter time compared with vanilla FL.
Specifically, RingSFL takes less time to converge than vanilla
FL when the D2D communication rate is greater than or
equal to 10 Mbps. Conversely, when the D2D communica-
tion rate is less than or equal to 5 Mbps, RingSFL takes more
time to converge than vanilla FL. This is further illustrated
in Fig. 15, which shows the time consumption of RingSFL to

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3309633

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 11:14:20 UTC from IEEE Xplore. Restrictions apply.

13

TABLE 3
Top-1 Accuracy (%) of Each Model under Different Algorithms. The best accuracy is marked in bold, and the secondary is marked in underline.

ResNet18 (IID / Non-IID) VGG16 (IID / Non-IID) AlexNet (IID / Non-IID) LeNet-5 (IID / Non-IID)

RingSFLv1 82.35± 0.36 / 48.30± 0.57 79.30± 0.20 / 40.35± 0.99 98.83± 0.11 / 89.58± 0.55 98.82± 0.19 / 94.34± 0.56
RingSFLv2 84.57± 0.17 / 56.80± 0.78 84.33± 0.10 / 41.26± 1.29 99.13± 0.07 / 94.31± 0.88 99.10± 0.04 / 95.75± 0.73

SplitFed 75.92± 0.51 / 30.16± 4.49 72.86± 0.62 / 28.17± 2.15 98.76± 0.09 / 84.00± 4.39 98.74± 0.24 / 93.64± 0.70
vanilla FL 78.93± 0.27 / 48.02± 1.28 77.02± 0.34 / 39.52± 0.81 98.81± 0.07 / 91.60± 1.14 98.84± 0.08 / 94.77± 0.29
vanilla SL 83.41± 0.44 / 26.96± 3.58 78.50± 0.69 / 35.33± 1.29 98.69± 0.10 / 98.84± 0.08 98.80± 0.14 / 98.86± 0.09

TABLE 4
Top-1 Accuracy (%) of Each Model under Different Propagation Lengths. The best accuracy is marked in bold, and the secondary is marked in

underline.

Propagation
Lengths

ResNet18
(IID / Non-IID)

Propagation
Lengths

VGG16
(IID / Non-IID)

Propagation
Lengths

AlexNet
(IID / Non-IID)

Propagation
Lengths

LeNet-5
(IID / Non-IID)

6:1:1:1:1 84.66± 0.33 / 56.45± 1.10 12:1:1:1:1 84.29± 0.14 / 41.48± 1.08 13:1:1:1:1 99.00± 0.16 / 94.49± 0.67 8:1:1:1:1 99.10± 0.07 / 95.85± 0.32

5:2:1:1:1 83.90± 0.29 / 55.45± 0.47 11:2:1:1:1 83.98± 0.24 / 42.56± 0.69 11:3:1:1:1 99.05± 0.12 / 94.28± 0.59 7:2:1:1:1 99.04± 0.06 / 95.79± 0.30

4:3:1:1:1 83.00± 0.16 / 53.63± 0.62 10:3:1:1:1 83.78± 0.53 / 41.68± 0.69 9:5:1:1:1 99.11± 0.10 / 93.79± 0.30 6:3:1:1:1 99.02± 0.05 / 95.66± 0.19

3:3:2:1:1 82.24± 0.20 / 51.34± 0.74 8:3:3:1:1 82.81± 0.25 / 39.25± 0.62 7:5:3:1:1 99.00± 0.14 / 93.00± 0.11 5:3:2:1:1 99.00± 0.06 / 95.65± 0.18

3:2:2:2:1 80.90± 0.19 / 50.27± 0.53 6:3:3:3:1 80.53± 0.32 / 37.57± 0.94 5:5:3:3:1 98.91± 0.07 / 92.14± 0.61 4:3:2:2:1 98.96± 0.04 / 95.51± 0.16

2:2:2:2:2 79.00± 0.50 / 47.89± 0.64 4:3:3:3:3 77.58± 0.25 / 39.76± 0.96 4:4:3:3:3 98.84± 0.12 / 92.53± 1.03 3:3:2:2:2 98.97± 0.03 / 95.45± 0.16

complete a training round at different D2D communication
rates.

4.2.5 Convergence Time Reduction and Energy Efficiency

To further validate RingSFL’s capability to accommodate
system heterogeneity, we evaluate its convergence time re-
duction and energy efficiency on the prototype system. We
utilize ResNet18 for training and set the propagation lengths
of RingSFL to L0:L1:L2:L3:L4=4:3:1:1:1.

As illustrated in Fig. 16, compared to vanilla FL,
RingSFL reduces the training time by 61.6%, significantly
enhancing the system’s training efficiency and computa-
tional resource utilization. This is attributed to the adap-
tive model split scheme, which assigns more propagation
lengths to clients with strong computational power and
correspondingly more computational load, and vice versa.
This heterogeneity-adaptive computational load balancing
scheme effectively alleviates the straggler effect, thus re-
ducing the training time. In the figure, the training time of
SplitFed and vanilla SL is lower than RingSFL due to the
model split mechanism, which offloads a large portion of the
training tasks to the server with high computation power.
Specifically, in our experiments, the client computational
volume of SplitFed in each round is 1/5 of RingSFL, and
the client computational volume of vanilla SL is 1/25 of
RingSFL. However, they cannot achieve comparable per-
formance in terms of model accuracy and user privacy, as
discussed above.

Fig. 17 illustrates the capability of RingSFL to regulate
the power consumption of the FL system. It is evident
that, in comparison to vanilla FL, RingSFL increases the
energy consumption of PC nodes and decreases the energy
consumption of Raspberry Pi nodes, which is attributed to
the ability of RingSFL to balance the computational loads
among clients. This observation demonstrates that RingSFL
can effectively conserve the energy of the battery-powered
devices, thus enhancing the life time of the RingSFL system.

4.2.6 Privacy Preservation

To assess RingSFL’s capacity to withstand data reconstruc-
tion attacks, we conducted attack experiments on both
vanilla FL and RingSFL using the methods outlined in [10].
We attempted to recover the training data by eavesdropping
on the model parameters transmitted between the client and
the server. To measure the efficacy of the data recovery, we
calculated the cosine similarity of the recovered data to the
original data, which is formulated as

s =
xT x̂

∥x∥2 · ∥x̂∥2
(9)

where x denote the original data, x̂ denote the recovered
data, and ∥ · ∥2 denote the L2 norm of the vector. The cosine
similarity between x and x̂ can be used to measure the sim-
ilarity between the two, with a value of 1 indicating perfect
similarity. In this experiment, the neural network employed
was LeNet and the dataset used was CIFAR10. The system
was composed of five clients, and the propagation length
was set to L0:L1:L2:L3:L4=3:3:2:2:2.

The results of the data reconstruction attack are depicted
in Fig. 19, where the first row corresponds to the attack on
vanilla FL and the second row to the attack on RingSFL.
It is evident that, after 80 iterations, the training data in
vanilla FL has been successfully recovered, while the attack
on RingSFL fails to recover the training data. Additionally,
Fig. 18 shows that the cosine similarity between the recon-
structed data and the original data has converged to 1 in
the attack on vanilla FL after 80 iterations, while the cosine
similarity remains around 0 in the attack on RingSFL. This is
attributed to the transfer of the complete model parameters
by vanilla FL, which allows the attacker to extract the
complete information about the training data, thus enabling
the recovery of the original training data and resulting in
user privacy leakage. In contrast, the model transmitted
by RingSFL is a blended model, making it difficult for
an attacker to extract information about the training data
from such fragmented and mixed model parameters, thus
protecting user privacy effectively.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3309633

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 11:14:20 UTC from IEEE Xplore. Restrictions apply.

14

iter=20

iter=20

iter=50

iter=50

iter=80

iter=80

iter=110

iter=110

iter=140

iter=140

iter=170

iter=170

iter=200

iter=200

iter=230

iter=230

iter=260

iter=260

iter=290

iter=290

vanilla FL

RingSFL

Fig. 19. Reconstructed data after attacking vanilla FL and RingSFL.

5 LIMITATIONS AND FUTURE WORKS

5.1 Incentive Mechanism Design
Fairness is a fundamental principle of multi-client collab-
orative training, and clients are unlikely to participate in
training when they perceive it to be unfair [47]. In the
RingSFL system, however, a higher computational load is
assigned to clients with higher computational power, re-
sulting in increased consumption of computation resources
and battery energy. To motivate clients to participate in the
training and contribute more resources, effective incentive
mechanisms are necessary, such as monetary rewards. Nev-
ertheless, verifying the actual contribution from the training
results is a challenge, as each client only trains a part of the
model.

5.2 Communication Cost Reduction
Compared to vanilla FL, RingSFL introduces additional
D2D communication between clients. And the D2D multi-
hop transmission of feature maps may make it unsuitable
for scenarios with limited communication resources. One
potential solution is to reduce the total amount of com-
munication by reducing the number of clients in the ring
to control the number of hops for D2D communication
during forward and backward propagation. Specifically, we
can split a large ring consisting of all clients into multiple
subrings consisting of some clients, and perform forward
and backward propagation independently in each subring.
Since we can control the size of each subring, the number
of hops communicated in each subring during forward and
backward propagation will be reduced, and the communi-
cation cost will be significantly reduced.

5.3 Communication Topology Construction
In RingSFL, the ring topology is a critical factor in the
training process and model performance. Consequently, it
is essential to devise an effective algorithm for constructing
the ring topology. As many factors, such as geographical
location of users, channel conditions between users, the
computational power of users, quality of user data sets,
etc., can influence the communication topology, traditional
optimization methods may not be applicable. Therefore,
machine learning-based methods, such as reinforcement
learning, can be explored as a potential research direction
for constructing communication topologies.

5.4 Privacy Protection

When faced with a strong eavesdropper, D2D communica-
tion between clients still has the potential to compromise
privacy. In addition, since the network topology is known
in advance, the propagation length may reveal partial infor-
mation about the system’s computational resources. There-
fore further design of privacy-preserving mechanisms for
RingSFL is needed.

6 CONCLUSION

In this paper, we have proposed a novel FL scheme, dubbed
RingSFL, which integrates FL with an efficient model split
mechanism to adapt to system heterogeneity while pre-
serving data privacy. Experiments conducted on both the
simulation environment and prototype system have demon-
strated that RingSFL can achieve faster convergence and
higher accuracy than the benchmarks, and have better pri-
vacy performance. Furthermore, RingSFL can be applied to
scenarios with significant system heterogeneity to enhance
the overall system efficiency. For future works, we will
design an effective incentive mechanism and learning-based
optimal topology construction scheme for RingSFL.

REFERENCES

[1] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and
M. Shah, “Transformers in vision: A survey,” ACM computing
surveys (CSUR), vol. 54, no. 10s, pp. 1–41, 2022.

[2] D. W. Otter, J. R. Medina, and J. K. Kalita, “A Survey of the
Usages of Deep Learning for Natural Language Processing,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32, no. 2,
pp. 604–624, 2021.

[3] J. Li et al., “Recent advances in end-to-end automatic speech recog-
nition,” APSIPA Transactions on Signal and Information Processing,
vol. 11, no. 1, 2022.

[4] Y. Wang, M. Chen, T. Luo, W. Saad, D. Niyato, H. V. Poor, and
S. Cui, “Performance Optimization for Semantic Communications:
An Attention-Based Reinforcement Learning Approach,” IEEE
Journal on Selected Areas in Communications, vol. 40, no. 9, pp. 2598–
2613, 2022.

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Ar-
cas, “Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in Proc. International Conference on Artificial
Intelligence and Statistics, 2017, pp. 1273–1282.

[6] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang,
Q. Yang, D. Niyato, and C. Miao, “Federated Learning in Mobile
Edge Networks: A Comprehensive Survey,” IEEE Communications
Surveys Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3309633

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 11:14:20 UTC from IEEE Xplore. Restrictions apply.

15

[7] Z. Yang, M. Chen, K.-K. Wong, H. V. Poor, and S. Cui, “Federated
learning for 6G: Applications, challenges, and opportunities,”
Engineering, vol. 8, pp. 33–41, 2022.

[8] C. Yang, M. Xu, Q. Wang, Z. Chen, K. Huang, Y. Ma, K. Bian,
G. Huang, Y. Liu, X. Jin et al., “FLASH: Heterogeneity-Aware Fed-
erated Learning at Scale,” IEEE Transactions on Mobile Computing,
2022.

[9] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
“Space/Aerial-Assisted Computing Offloading for IoT Applica-
tions: A Learning-Based Approach,” IEEE Journal on Selected Areas
in Communications, vol. 37, no. 5, pp. 1117–1129, 2019.

[10] L. Zhu, Z. Liu, and S. Han, “Deep Leakage from Gradients,” in
Proc. Advances in Neural Information Processing Systems, 2019, pp.
1–11.

[11] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and
P. Molchanov, “See Through Gradients: Image Batch Recovery via
GradInversion,” in Proc. IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021, pp. 16 337–16 346.

[12] Y. Deng, F. Lyu, J. Ren, H. Wu, Y. Zhou, Y. Zhang, and
X. Shen, “AUCTION: Automated and Quality-Aware Client Se-
lection Framework for Efficient Federated Learning,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 33, no. 8, pp. 1996–
2009, 2022.

[13] J. Xu and H. Wang, “Client Selection and Bandwidth Allocation
in Wireless Federated Learning Networks: A Long-Term Perspec-
tive,” IEEE Transactions on Wireless Communications, vol. 20, no. 2,
pp. 1188–1200, 2021.

[14] M. Zhang, G. Zhu, S. Wang, J. Jiang, Q. Liao, C. Zhong, and
S. Cui, “Communication-efficient federated edge learning via opti-
mal probabilistic device scheduling,” IEEE Transactions on Wireless
Communications, vol. 21, no. 10, pp. 8536–8551, 2022.

[15] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S.
Hong, “Federated Learning over Wireless Networks: Optimization
Model Design and Analysis,” in Proc. IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, 2019, pp. 1387–1395.

[16] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei,
“Energy efficient federated learning over wireless communication
networks,” IEEE Transactions on Wireless Communications, vol. 20,
no. 3, pp. 1935–1949, 2020.

[17] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep Learning with Differential Pri-
vacy,” in Proc. ACM SIGSAC Conference on Computer and Communi-
cations Security, 2016, pp. 308–318.

[18] K. Wei, J. Li, M. Ding, C. Ma, H. Su, B. Zhang, and H. V. Poor,
“User-level privacy-preserving federated learning: Analysis and
performance optimization,” IEEE Transactions on Mobile Comput-
ing, vol. 21, no. 9, pp. 3388–3401, 2021.

[19] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. S.
Quek, and H. V. Poor, “Federated Learning With Differential
Privacy: Algorithms and Performance Analysis,” IEEE Transactions
on Information Forensics and Security, vol. 15, pp. 3454–3469, 2020.

[20] D. Liu and O. Simeone, “Privacy for Free: Wireless Federated
Learning via Uncoded Transmission With Adaptive Power Con-
trol,” IEEE Journal on Selected Areas in Communications, vol. 39,
no. 1, pp. 170–185, 2021.

[21] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure
aggregation for privacy-preserving machine learning,” in Proc.
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175–1191.

[22] B. Zhao, X. Liu, W.-N. Chen, and R. Deng, “CrowdFL: privacy-
preserving mobile crowdsensing system via federated learning,”
IEEE Transactions on Mobile Computing, 2022.

[23] A. Triastcyn and B. Faltings, “Federated Generative Privacy,” IEEE
Intelligent Systems, vol. 35, no. 4, pp. 50–57, 2020.

[24] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Blockchain
and Federated Learning for Privacy-Preserved Data Sharing in
Industrial IoT,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 6, pp. 4177–4186, 2020.

[25] Y. Qu, L. Gao, T. H. Luan, Y. Xiang, S. Yu, B. Li, and G. Zheng, “De-
centralized Privacy Using Blockchain-Enabled Federated Learning
in Fog Computing,” IEEE Internet of Things Journal, vol. 7, no. 6,
pp. 5171–5183, 2020.

[26] O. Gupta and R. Raskar, “Distributed learning of deep neural
network over multiple agents,” Journal of Network and Computer
Applications, vol. 116, pp. 1–8, 2018.

[27] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split
learning for health: Distributed deep learning without sharing raw
patient data,” arXiv preprint arXiv:1812.00564, 2018.

[28] O. Li, J. Sun, X. Yang, W. Gao, H. Zhang, J. Xie, V. Smith,
and C. Wang, “Label Leakage and Protection in Two-party Split
Learning,” in International Conference on Learning Representations,
2021.

[29] S. Pal, M. Uniyal, J. Park, P. Vepakomma, R. Raskar, M. Bennis,
M. Jeon, and J. Choi, “Server-Side Local Gradient Averaging and
Learning Rate Acceleration for Scalable Split Learning,” arXiv
preprint arXiv:2112.05929, 2021.

[30] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed:
When federated learning meets split learning,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 36, no. 8, 2022, pp.
8485–8493.

[31] D.-J. Han, H. I. Bhatti, J. Lee, and J. Moon, “Accelerating federated
learning with split learning on locally generated losses,” in ICML
2021 Workshop on Federated Learning for User Privacy and Data
Confidentiality. ICML Board, 2021.

[32] S. Oh, J. Park, P. Vepakomma, S. Baek, R. Raskar, M. Bennis, and
S.-L. Kim, “LocFedMix-SL: Localize, Federate, and Mix for Im-
proved Scalability, Convergence, and Latency in Split Learning,”
in Proceedings of the ACM Web Conference 2022, 2022, pp. 3347–3357.

[33] X. Liu, Y. Deng, and T. Mahmoodi, “Wireless distributed learn-
ing: A new hybrid split and federated learning approach,” IEEE
Transactions on Wireless Communications, 2022.

[34] A. Abedi and S. S. Khan, “FedSL: Federated Split Learning on
Distributed Sequential Data in Recurrent Neural Networks,” arXiv
preprint arXiv:2011.03180, 2020.

[35] V. Turina, Z. Zhang, F. Esposito, and I. Matta, “Federated or
Split? A Performance and Privacy Analysis of Hybrid Split and
Federated Learning Architectures,” in 2021 IEEE 14th International
Conference on Cloud Computing (CLOUD). IEEE, 2021, pp. 250–260.

[36] Y. Tian, Y. Wan, L. Lyu, D. Yao, H. Jin, and L. Sun, “FedBERT:
When Federated Learning Meets Pre-Training,” ACM Transactions
on Intelligent Systems and Technology (TIST), 2022.

[37] D. Romanini, A. J. Hall, P. Papadopoulos, T. Titcombe, A. Ismail,
T. Cebere, R. Sandmann, R. Roehm, and M. A. Hoeh, “Pyver-
tical: A vertical federated learning framework for multi-headed
splitnn,” arXiv preprint arXiv:2104.00489, 2021.

[38] F. Jameel, Z. Hamid, F. Jabeen, S. Zeadally, and M. A. Javed, “A
Survey of Device-to-Device Communications: Research Issues and
Challenges,” IEEE Communications Surveys Tutorials, vol. 20, no. 3,
pp. 2133–2168, 2018.

[39] Z. He, T. Zhang, and R. B. Lee, “Model inversion attacks against
collaborative inference,” in Proceedings of the 35th Annual Computer
Security Applications Conference, 2019, pp. 148–162.

[40] T. Wang, Y. Zhang, and R. Jia, “Improving robustness to model
inversion attacks via mutual information regularization,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 13, 2021, pp. 11 666–11 673.

[41] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[42] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” 2009.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[44] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” Communications
of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[46] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling
the Objective Inconsistency Problem in Heterogeneous Federated
Optimization,” in Proc. Advances in Neural Information Processing
Systems, vol. 33, 2020, pp. 7611–7623.

[47] Y. Zhan, J. Zhang, Z. Hong, L. Wu, P. Li, and S. Guo, “A Survey
of Incentive Mechanism Design for Federated Learning,” IEEE
Transactions on Emerging Topics in Computing, pp. 1–1, 2021.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3309633

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 11:14:20 UTC from IEEE Xplore. Restrictions apply.

16

Jinglong Shen received the B.S. degree in
Information Engineering from Xidian Univer-
sity, Xi’an, China, in 2021 and is currently
pursuing the Ph.D. degree in Information and
Communication Engineering with the School of
Telecommunications Engineering, Xidian Uni-
versity, Xi’an, China. His research interests in-
clude federated learning, wireless communica-
tion, and mobile edge computing.

Nan Cheng received the Ph.D. degree from
the Department of Electrical and Computer En-
gineering, University of Waterloo in 2016, and
B.E. degree and the M.S. degree from the De-
partment of Electronics and Information Engi-
neering, Tongji University, Shanghai, China, in
2009 and 2012, respectively. He worked as a
Post-doctoral fellow with the Department of Elec-
trical and Computer Engineering, University of
Toronto, from 2017 to 2019. He is currently a
professor with State Key Lab. of ISN and with

School of Telecommunications Engineering, Xidian University, Shaanxi,
China. He has published over 90 journal papers in IEEE Transactions
and other top journals. He serves as associate editors for IEEE Trans-
actions on Vehicular Technology, IEEE Open Journal of the Commu-
nications Society, and Peer-to-Peer Networking and Applications, and
serves/served as guest editors for several journals. His current research
focuses on B5G/6G, AI-driven future networks, and space-air-ground
integrated network.

Xiucheng Wang received a B.S. degree in
telecommunication engineering from Xidian Uni-
versity in 2021, and is currently pursuing an M.S.
degree from Xidian University. His research area
of interest is digital twin and graph neural net-
works of the wireless network.

Feng Lyu (IEEE M’18-SM’22) received the
Ph.D. degree from the Department of Computer
Science and Engineering, Shanghai Jiao Tong
University, Shanghai, China, in 2018. During re-
spective Sept. 2018-Dec. 2019 and Oct. 2016-
Oct. 2017, he worked as a postdoctoral fellow
and was a visiting PhD student in BBCR Group,
Department of Electrical and Computer Engi-
neering, University of Waterloo, Canada. He is
currently a professor with the School of Com-
puter Science and Engineering, Central South

University, Changsha, China. His research interests include mobile
networks, beyond 5G networks, big data measurement and application
design, and edge computing. He is the recipient of the best paper award
of IEEE ICC 2019. He currently serves as associate editor for IEEE
Systems Journal and Peer-to-Peer Networking and Applications, and
served as TPC members for many international conferences. He is a
member of the IEEE Computer Society, Communication Society, and
Vehicular Technology Society.

Wenchao Xu is a research assistant professor
at The Hong Kong Polytechnic University. He
received his Ph.D. degree from University of
Waterloo, Canada, in 2018. Before that he re-
ceived the B.E. and M.E. degrees from Zhejiang
University, Hangzhou, China, in 2008 and 2011,
respectively. In 2011, he joined Alcatel Lucent
Shanghai Bell Co. Ltd., where he was a Software
Engineer for telecom virtualization. He has also
been an Assistant Professor at School of Com-
puting and Information Sciences in Caritas Insti-

tute of Higher Education, Hong Kong. His research interests includes
wireless communication, Internet of things, distributed computing and
AI enabled networking.

Zhi Liu received the Ph.D. degree in informatics
in National Institute of Informatics. He is cur-
rently an Associate Professor at The Univer-
sity of Electro-Communications. His research in-
terest includes video network transmission and
mobile edge computing. He is now an editorial
board member of Springer wireless networks
and IEEE Open Journal of the Computer Soci-
ety. He is a senior member of IEEE.

Khalid Aldubaikhy (Member, IEEE) received
the B.E. degree from Qassim University, Buray-
dah, Saudi Arabia, in 2008, the M.A.Sc. degree
in electrical and computer engineering from Dal-
housie University, Halifax, NS, Canada, in 2012,
and the Ph.D. degree in electrical and computer
engineering from the University of Waterloo, Wa-
terloo, ON, Canada, in 2019. He is currently
an Assistant Professor at the Department of
Electrical Engineering, Qassim University, Qas-
sim, Saudi Arabia. His research interests include

millimeter-wave wireless networks, medium access control, MU-MIMO,
and 6G cellular networks.

Xuemin (Sherman) Shen (Fellow, IEEE) re-
ceived the Ph.D. degree in electrical engineer-
ing from Rutgers University, New Brunswick, NJ,
USA, in 1990.

He is currently a University Professor with the
Department of Electrical and Computer Engi-
neering, University of Waterloo, Canada. His re-
search interests include network resource man-
agement, wireless network security, the Internet
of Things, 5G and beyond, and vehicular ad hoc
and sensor networks. He is a registered Profes-

sional Engineer of Ontario, Canada, an Engineering Institute of Canada
Fellow, a Canadian Academy of Engineering Fellow, a Royal Society of
Canada Fellow, a Chinese Academy of Engineering Foreign Member,
and a Distinguished Lecturer of the IEEE Vehicular Technology Society
and Communications Society. He received the R.A. Fessenden Award
from IEEE, Canada, in 2019, the Award of Merit from the Federation of
Chinese Canadian Professionals (Ontario) in 2019, the James Evans
Avant Garde Award from the IEEE Vehicular Technology Society in
2018, the Joseph LoCicero Award in 2015 and Education Award in 2017
from the IEEE Communications Society, and the Technical Recognition
Award from Wireless Communications Technical Committee in 2019
and AHSN Technical Committee in 2013. He has also received the
Excellent Graduate Supervision Award from the University of Waterloo
in 2006 and the Premier’s Research Excellence Award (PREA) from
the Province of Ontario, Canada, in 2003. He served as the Technical
Program Committee Chair/the Co-Chair for IEEE Globecom’16, IEEE
Infocom’14, IEEE VTC’10 Fall, and IEEE Globecom’07, and the Chair
for the IEEE Communications Society Technical Committee on Wireless
Communications. He is the President Elect of the IEEE Communica-
tions Society. He was the Vice President for Technical & Educational
Activities, the Vice President for Publications, a Member-at-Large on the
Board of Governors, the Chair of the Distinguished Lecturer Selection
Committee, and a member of IEEE Fellow Selection Committee of the
ComSoc. He served as the Editor-in-Chief for the IEEE INTERNET OF
THINGS JOURNAL, IEEE Network, and IET Communications.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3309633

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 11:14:20 UTC from IEEE Xplore. Restrictions apply.

