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Abstract—Space-air-ground integrated networks (SAGINs) are
envisioned to provide seamless coverage and enhanced flexibility
compared with traditional terrestrial mobile networks, which
has attracted much attention from both industry and academia.
However, orchestrating heterogeneous resources in such a large-
scale and dynamic network is challenging, especially encoun-
tering diverse services with multi-dimensional requirements. In
this paper, we first propose a software-defined networking (SDN)
and network function virtualization (NFV)-based reconfigurable
SAGIN architecture for constructing service function chains
(SFCs). Based on that, we investigate the SFC orchestration
and wireless resource management where the virtual link rate
adaption between each virtual network function (VNF) is intro-
duced to improve the network resource utilization. Considering
the limited physical resource and the heterogeneity in SAGINs, we
jointly formulate the VNF embedding, virtual link rate adaption,
and wireless resource allocation as a mixed-integer nonlinear
programming (MINLP) problem to maximize the network profit.
Due to the NP-hardness of the problem, we first transform the
problem into a continuous optimization problem by successive
convex approximation. By introducing an additional penalty
into the objective function, an iterative alternation algorithm
is proposed to find a near-optimal solution of the transformed
problem. Extensive simulation results show that our proposed
approach outperforms the benchmarks in average network rev-
enue, successfully serving probability, and resource consumption.

Index Terms—Space-air-ground integrated network (SAGIN),
software-defined networking (SDN), network function virtual-
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ization (NFV), service function chain (SFC), wireless resource
allocation.

I. INTRODUCTION

TRADITIONAL terrestrial mobile networks have achieved
high capacity and low latency with advanced wireless

communication and antenna technologies, which have enabled
a large number of applications, such as augment reality
(AR)/virtual reality (VR), industry Internet of things (IoT),
and connected vehicles [1], [2]. However, due to the fixed
deployment of the network infrastructure, the overall network
topology is static, and it is difficult to dynamically adjust
the network resource distribution according to real-time re-
quirements. Furthermore, dense base station (BS) deployment
and terrestrial backhaul network construction is prohibitively
expensive, and the deployment of terrestrial networks is lim-
ited by terrain such as deserts, and oceans. Thus, conventional
ground-based networks are difficult to cope with the extension
trend of network coverage [3], [4].

To complement conventional terrestrial networks, both
academia and industry pay attention to non-terrestrial networks
(NTNs). Low earth orbit (LEO) satellite constellation enables
high-capacity and low-cost satellite network to provide global
coverage [5]. Particularly, the STARLINK LEO constellation
operated by SpaceX has provided network access to 32 coun-
tries, and 12,000 LEO/very-low-earth-orbit (VLEO) satellites
are planned to provide global coverage, with a possible
extension to 42,000 in the future. Besides, aerial networks,
mainly containing high-altitude platform stations (HAPs) and
unmanned aerial vehicles (UAVs), have been attracting people
in recent years [6], [7]. HAPs are defined as the radio stations
at 20-50 kilometers above the Earth, which are able to suspend
at a fixed position to provide fixed broadband network access
in hard-to-reach areas [8]. The UAV is the component of the
unmanned aircraft system (UAS), which operates above the
Earth without any human control and is agile enough to serve
real-time hot spot areas [9]. Comprehensively integrating with
the space networks, aerial networks, and ground networks,
the space-air-ground integrated networks (SAGINs) are pro-
posed, which take advantage of the complementary benefits
of three network segments and offer unprecedented network
ability in coverage, flexibility, capacity, and reconfigurability
[10], [11]. However, the inherent heterogeneity and dynamics
challenge network operators in traffic distribution, routing
protocol design, and load balancing. Conventional exclusive
network architectures and dedicated hardware are not reliable
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and cost-effective to orchestrate network resources for services
with multi-dimensional requirements in such a large-scale and
dynamic network scenario.

Fortunately, software-defined networking (SDN) technology
can disassociate the data plane from the control plane and en-
ables a more flexible, dynamic, and programmatically efficient
network operation [12]. By network function virtualization
(NFV) technology, resources of underlying heterogeneous
physical infrastructures can be abstracted into the virtual
resources pool, which provides a more flexible approach in
resource management than traditional dedicated hardware.
Leveraging the power of SDN and NFV, service function
chains (SFCs) can be constructed, comprising a sequential
arrangement of virtual network functions (VNFs), enabling
customizable solutions to cater to diverse quality-of-service
(QoS) requirements of users. To conduct a SFC configuration,
the physical resources are first abstracted and incorporated
into the virtual resource pool. When service requests arrive,
they are described as specific VNF chains with resource
requirements and forwarded to the SFC orchestrator. Based
on the current network state, the SFC orchestrator evaluates
the feasibility of accepting the service. Upon acceptance, the
corresponding network resource blocks are allocated, enabling
the sequential execution of VNFs from source to destination,
ultimately accomplishing the service request [13].

Considering the network topology, link state, and channel
capability are static in core networks, researchers usually
formulate the SFC mapping problem based on the linear
programming (LP) model [14]–[20] or Markov decision pro-
cess (MDP) [21]–[26], and utilize heuristic or reinforcement
learning (RL)-based algorithms to solve it. These algorithms
are simple but efficient, which are easy to obtain near-
optimal solutions under stable network status with adequate
iterations or offline training when the action space is small
and discrete. Nevertheless, the dynamic network infrastruc-
ture in SAGINs alters the channel status and connectivity,
rendering previously efficient resource orchestration inefficient
over time, thereby degrading algorithm performance and even
infringing on the user requirements [27], [28]. To address the
dynamic environment of SAGINs, the coordination of SFC
mapping and network resource scheduling is vital in model
design. Furthermore, current research on SFC orchestration
only considers the SFC mapping without taking the virtual link
rate (i.e., the data transmission rates of the interconnections
between VNFs of each SFC) into account, which significantly
increase the blocking probability of network and result in poor
service ability. In order to maximize network performance and
improve heterogeneous resource utilization, a joint algorithm
for SFC orchestration with virtual link adaption (rate-adaptive
SFC orchestration) and network resource allocation is urgently
required.

In this paper, we investigate the rate-adaptive SFC orches-
tration and wireless resource allocation jointly. A problem
is formulated to maximize the network profit by optimizing
the SFC orchestration, virtual link rate adaption, spectrum
allocation, and power allocation, where the SFC provision and
network resources are constrained. Since it is a mixed integer
nonlinear programming (MINLP), it is non-convex and NP-

hard, indicating that it is intractable. To solve this problem,
we first transform it into a continuous optimization problem by
successive convex approximation, where the additional penalty
is introduced into the objective function to offset the influence
of the inconsistency of integers. To address highly coupled
variables in constraints, an iterative alternating optimization
algorithm is proposed to obtain near-optimal solutions. During
the optimization process, SFC mapping and network resource
allocation are optimized with virtual link rate iteratively. Our
main contributions can be summarized as follows.

1) We propose an SDN/NFV-based SAGIN architecture to
support multi-dimensional resource orchestration in a
large-scale dynamic network environment.

2) Based on the proposed architecture, we formulate a joint
optimization problem of SFC orchestration and wire-
less resource scheduling considering service provision
constraint, network resource limitation, and long-term
aerial network stability preservation. Specifically, the rate
adaption of virtual link is introduced into the optimization
model to maximize the network profit.

3) To achieve efficient service deployment and network
resource utilization, we present an iterative alternating
optimization algorithm by convex approximation. Then,
we analyze the influence of wireless resources and derive
the expectation of network receiving capacity.

4) Extensive simulation results are exhibited to evaluate the
proposed algorithm and architecture in network profit,
service acceptance ratio, average resource costs, etc.

The remainder of this paper is organized as follows. In
Section II, a review of related work is presented. In Section III,
we present the considered system model in detail. An MINLP
problem is formulated in Section IV with the consideration of
service provision constraint and network resource constraint.
A convex optimization-based iterative alternating algorithm is
proposed to solve this problem in Section V. In Section VI,
simulations are carried out to evaluate the performance of the
proposed algorithm. Finally, Section VII concludes this paper.

II. RELATED WORK

By investigating the state-of-the-art studies, there has been
abundant research on SFC orchestration in terrestrial networks
and few related work in SAGINs.

For the SFC orchestration in terrestrial networks, it is
usually formulated as an integer linear programming (ILP)
[14]–[18] or mixed integer linear programming (MILP) opti-
mization model [19], where the SFC mapping is optimized to
maximize the network revenue [29]. Specifically, the carrier
level VNFs placement problem in the cloud is studied in [19]
where a betweenness-centrality-based algorithm is proposed to
minimize the intra- and end-to-end delays of SFC. Considering
the energy consumption of SDN switches, the SFC mapping
problem is invesitgated to minimize the reconfiguration over-
head [14]. In [15], the SFC embedding with dynamic VNF
deployment in a geo-distributed cloud system is formulated
as a binary integer programming, and two algorithms are
presented to minimize the embedding cost and service la-
tency separately [15]. Similar research on SFC mapping is
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Fig. 1. SDN/NFV-based reconfigurable SAGIN network architecture

presented to minimize the energy consumption in [16], [17].
To cope with the service interruptions caused by node failures,
some researchers concentrated on promoting SFC reliability
by optimizing both the SFC mapping and backup instance
deployment [18], [20]. Besides, the SFC mapping problem
is formulated as an MDP model, and deep neural network
(DNN)-based [21], [22] or graph-neural network (GNN)-based
[23]–[26] approaches are utilized to solve the problem.

There are less research works on SFC orchestration in
SAGINs, and most studies introduce the SAGIN to com-
plement conventional terrestrial wireless networks in cover-
age expansion and performance enhancement [4], [13], [30],
[31]. In [30], an SAGIN-based network management and
reconfiguration framework is proposed to offload bidirectional
missions, which extends the coverage of ground wireless
networks and enhances the capability and sustainability of
NTNs. The simulation results demonstrate that the proposed
network architecture achieves a lower blocking rate and the
average cost of computation resources compared to ground-
based networks, with an acceptable additional bandwidth
cost. Based on the proposed architecture in [30], an air-
ground integrated architecture composed of a HAP and several
ground BSs is proposed in [13], where the node capacity
and coverage performance are distinct, and a new metric is
defined as aggregation ratio to measure the tradeoff between
communication costs and computation costs. Similar research
is presented in [4] to maximize resource utilization. To adapt
to the dynamic environment in SAGINs, an SFC provisioning

and reconfiguration mechanism is proposed in [31], which
enables the live VNF migration and improves the service
acceptance ratio. The above references promote the network
performance compared with that solely based on ground
networks and provide more possibilities for future network
expansion. However, to further develop the performance of
SAGINs, the coordination with network resources scheduling
and SFC virtual link rate adaption are equally important [14].

III. SYSTEM MODEL

To support multi-dimensional resource orchestration in a
large-scale dynamic network environment, we propose an
SDN/NFV-based reconfigurable SAGIN network architecture,
as shown in Fig. 1. The architecture consists of three segments:
LEO satellites in the space network, aerial nodes in the
aerial network, and ground nodes in the ground network.
The satellites configured with the central SDN controller
are in charge of SFC orchestration and wireless resource
management. Both aerial nodes and ground nodes are equipped
with communication units and computation units supporting
multi-VNF embedding. VNFs are dedicated and shall not be
shared by other services. When a network service (e.g., remote
surgery, ubiquitous communication) arrive at the network, it
is described as specific sequenced VNFs, and the decision
on orchestration policy (if acceptance) or rejection are made
by the central controller with the consideration of service
requirements and network state. The notations used in this
paper are listed in Table I.
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TABLE I
NOTATIONS

Notations Description
N The set of physical nodes
NG The set of ground nodes
NA The set of aerial nodes
E The set of physical links
EG The set of physical links between ground nodes
EA1 The set of physical links from ground nodes to aerial nodes

EA2
The set of physical links from aerial nodes to other network
nodes

Q The set of service requests
Cn The computation capacity of physical node
sq The source node of service request q
dq The destination node of service request q
fq The set of VNFs of service request q
Eq The set of virtual links of service q

xf,n,q
The binary variable that indicates whether VNF f of service
request q is embedded on node n

y
(n,m)
(i,j),q

The binary variable that indicates whether the link between
VNF i and VNF j of service q is mapped on physical
link (n,m)

zq
The binary variable that indicates whether request q is
successfully accepted

tq The required time of service request q
rq The revenue of service request q

l
(i,j)
q

The virtual link rate of service q between VNF i to VNF
j

The physical network is represented by a graph G =
(N,E), where N is the set of network nodes and E is the
set of physical links that interconnect network nodes. In this
scenario, N = NA∪NG where NA represents the set of aerial
nodes and NG is the set of ground nodes. Denote the computa-
tion capacity of network node n by Cn; E = EG∪EA1∪EA2,
where EG is the set of physical links between ground stations,
EA1 is the set of wireless links from ground nodes to aerial
nodes, and EA2 is the set of wireless links from aerial nodes
to other network nodes. Ground nodes are interconnected, and
the channel capacity is denoted by lG1. The wireless channel
capacity from ground nodes to aerial nodes is denoted by lG2,
which is calculated by the transmission power, path loss, and
noise. The channel model from the aerial node to the aerial
node or the ground node follows the free-space path loss model
[32]. Frequency division multiple access (FDMA) is utilized
in aerial networks, and the spectrum is allocated to each aerial
node orthogonally. The total available spectrum authorized
for data transmission of each SFCs are denoted by B, and
we assume the radio bands are small enough to be allocated
continuously. The arrival of each service is independent and
random, and we accumulate these newly arrived services
and execute the determination periodically. Without loss of
generality, network topology and wireless environment can be
assumed to be quasi-stationary during each decision-making
interval [31], [33]–[35]. Nevertheless, it is worth noting that
aerial nodes can be moving, and our proposed model is also
applicable in such dynamic network scenarios.

A general SAGIN topology is shown in Fig. 2 where node
1 to node 5 are ground nodes, and node 6 to node 8 are
aerial nodes that connect to each other and ground nodes via
wireless channels. Service 1 is embedded on node 1, node 2,
node 6, and node 3; service 2 is embedded on node 1, node2,

Fig. 2. A general topology of the SAGIN.

and node 5. Physical links have fixed capacity, which means
that the redundant transmission resource between node 2 and
node 4 or others cannot be used for the crowded link between
node 1 and node 2. However, transmission resource in aerial
networks are dynamic and reconfigurable, where unoccupied
bandwidth can be scheduled to node 6 for the transmission
from node 6 to node 3. In an extreme example, the rigid
terrestrial network will reject many services, even if some
other links are still idle. This happens when the number of
the same service 1 and 2 increases, or when service 1 and
service 2 themselves require more communication resources.
Nonetheless, the reconfigurable network can improve resource
utilization and alleviate the congestion. Similarly, the rate
adaption mechanism can reduce the network congestion in
both terrestrial networks and aerial networks, allowing more
services that would otherwise be denied to be received. Thus,
our proposed model can promote resource utilization and
maximize network profit.

A. Service Modeling

Consider that the number and types of services arriving
at the network have been determined before each decision-
making interval, and the set of services is denoted by Q =
{q|q = 1, 2, ..., |Q|}. Considering transmission requirement
and computation requirement, two types of services are stud-
ied, which are high-computation low-bandwidth service and
low-computation high-bandwidth service, respectively [13].
VNF sequences of each service are predefined, and VNFs are
not allowed to be shared by different service requests [31].
Denote the sets of source nodes and destination nodes by
{sq|q ∈ Q} and {dq|q ∈ Q}, respectively. fq = {fi|i =
1, 2, . . . , |fq|} denotes the VNF sequence of service q. A
service is completed successfully only if each VNF is executed
in order from its source to destination within the required time.

Let binary variable xf,n,q = 1 if VNF f of ser-
vice q is embedded on node n, and xf,n,q = 0
otherwise. The solution vector is denoted by x =
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{xf,n,q | ∀f ∈ fq,∀n ∈ N, ∀q ∈ Q}. Similarly, binary variable
y
(n,m)
(i,j),q = 1 when virtual link between VNF i and VNF
j of service q is mapped on physical link (n,m), and
y
(n,m)
(i,j),q = 0 otherwise. The solution vector is denoted by

y =
{
y
(n,m)
(i,j),q | ∀(i, j) ∈ Eq,∀(n,m) ∈ E,∀q ∈ Q

}
, where

Eq denotes the virtual links from VNF i to VNF j, and
Eq = {(i, j)|∀i, j ∈ fq, q ∈ Q}. Another binary variable zq
is defined to indicate whether service q is received, as

zq =

{
1, service q is successfully received,
0, otherwise.

(1)

The solution vector is denoted by z = {zq | q ∈ Q}.

B. Delay Modeling

As previously discussed, the SFC plays a crucial role in
satisfying diverse service requirements of users, particularly in
applications like self-driving and natural disaster rescue. One
key aspect that demands significant attention is the guarantee
of a reliable and low-latency network delay. This paramount
consideration ensures that critical services can be delivered
promptly and efficiently, enabling timely responses across
various scenarios. In this model, the delay of each service is
denoted by tq , which is consisted of the communication delay
and computation delay, i.e.,

tq = tcomm,q + tcomp,q, (2)

where tcomm ,q denotes the transmission delay of service q over
physical links, and tcomp,q is computation delay at network
nodes. tcomm ,q is expressed as

tcomm,q =
∑

(i,j)∈Eq

lq

l
(i,j)
q

, (3)

where lq represents the data volume of service q needed to be
transmitted and l

(i,j)
q represents the allocated virtual link rate

of service q between VNF i and VNF j. The solution vector
is denoted by l =

{
l
(i,j)
q | ∀(i, j) ∈ Eq,∀q ∈ Q

}
.

On the other hand, the computation delay is caused by
VNF execution. Let cf,n,q denote the allocated computation
resource for serving the VNF f of service q at node n, and
cf,q represents the volume of computation data in VNF f of
service q. The transmission delay of service q is expressed as

tcomp,q =
∑
f∈fq

cf,q
cf,n,q

. (4)

C. Cost Modeling

In this paper, we aim to maximize the network profit
obtained by subtracting the total variable cost of utilized
resources from total revenue of received services in current
time slot. Since the service is considered as delay-sensitive,
the revenue is generated only when the service meets its
requirements. The cost arises from the energy consumption
of network nodes that supported each accepted service. In this
subsection, the cost of each network node is characterized by
considering both resource utilization and energy consumption

factors. The variable computation cost is the ratio of allocated
computation resources to computation capacity [36], [37].
For ground nodes, the communication cost depends on link
utilization [36], [38]–[41]. The total cost of ground node n is
expressed as

cBS
n = αcm,NG

∑
m̸=n

l(n,m) + αcp,NG

∑
q∈Q

∑
f∈fq

cf,n,qxf,n,q

Cn
,

∀n ∈ NG,
(5)

where αcm,NG
and αcp,NG

are the weight of communication
cost and computation cost of ground nodes, respectively.
l(n,m) =

∑
q∈Q

∑
∀(i,j)∈Eq

y
(n,m)
(i,j),ql

(i,j)
q is the used channel

capacity between network node n and network node m. b(n,m)

and p(n,m) represent the spectrum and transmission power
from aerial node n to network node m, respectively. The
solution vector is denoted by b =

{
b(n,m) | ∀(n,m) ∈ EA2

}
and p =

{
p(n,m) | ∀(n,m) ∈ EA2

}
parallelly. For the cost

model of aerial nodes, the transmission power is considered.
The cost of aerial nodes is expressed as

cUAV
n = αp

∑
m ̸=n

p(n,m) + αcp,NA

∑
q∈Q

∑
f∈fq

cf,n,qxf,n,q

Cn
,

∀n ∈ NA,

(6)

where αcm,NA
and αcp,NA

denote the weight of communica-
tion cost and computation cost of aerial nodes. αp denotes
the weight of the cost of transmission power, respectively.
Compared with ground nodes, aerial nodes lack a continuous
and sufficient source of power, and the energy consumption
of aerial nodes is expressed as

Ωn = β1

∑
m ̸=n

p(n,m) + β2

∑
q∈Q

∑
f∈fq

cf,n,qxf,n,q, ∀n ∈ NA,

(7)
where Ωn represent the energy consumption model of aerial
node n, and β1 and β2 are the weight of power and compu-
tation, respectively.

D. Profit Modeling

The network’s revenue mainly depends on the completion of
each service, and the services in this model are delay sensitive.
Only when a service is completed within the required delay,
the system will earn a certain revenue. The total revenue is
expressed as

R =
∑
q∈Q

rqzq, (8)

where rq is the revenue generates from service q. The cost is
mainly incurred by the utilization of node resources, which is
expressed as

C =
∑

n∈NA

cUAV
n +

∑
n∈NG

cBS
n . (9)

The network profit is our optimization objective. and it is
denoted by subtracting the total cost of utilized resources from
total revenue of received services in current time slot, which
is expressed as

P = R− C. (10)
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IV. PROBLEM FORMULATION

To maximize the total network profit, we formulate the joint
rate-adaptive SFC orchestration and wireless resource alloca-
tion as an MINLP problem while considering the constraints
of service provision, ground networks, and aerial networks.

A. Service Provision Constraints

This subsection presents the constraints of service provision.
The sources, destinations, and VNF sequences are predefined
before the service arrives at the network. Constraints C1 and
C2 should be satisfied to ensure that the initial VNF and final
VNF are embedded in the source and destination. These two
constraints are

C1 : xf1,sq,q = zq, ∀q ∈ Q, (11)

C2 : xf|fq|,dq,q = zq, ∀q ∈ Q, (12)

where f1 and f|fq| are the first and the last VNF of service q,
respectively.

For any arriving service requests that are received, each
VNF of which have to be embedded on only one network
node, which is expressed as

C3 :
∑
n∈N

xf,n,q = zq,∀f ∈ fq,∀q ∈ Q. (13)

Besides, flow conservation is essential in graph routing,
which guarantees the inbound flow units equal outbound flow
units [42]. In this paper, the flow conservation ensures the
processing sequence of the SFC and is expressed as

C4 :
∑
m∈N

y
(n,m)
(i,j),q −

∑
m∈N

y
(m,n)
(i,j),q = xi,n,q − xj,n,q,

∀n ∈ N, ∀q ∈ Q,∀(i, j) ∈ Eq.

(14)

Each service has a strict latency constraints, which if
violated no revenue is generated. We assume that the delay
requirement of each service cannot be violated, and every
received service q should be completed within the delay
constraint tq , which is expressed as

C5 :
∑

(i,j)∈Eq

zq
lq

l
(i,j)
q

+
∑
f∈fq

zq
cf,n,q
cf,q

≤ tq, ∀q ∈ Q. (15)

B. Ground Network Constraints

Due to the limited resources of ground nodes, the allocated
computation resource cannot exceed the capacity, i.e.,

C6 :
∑
q∈Q

∑
f∈fq

xf,n,qcf,n,q ≤ Cn, ∀n ∈ NG, (16)

where Cn is the computation capacity of network node n.
Moreover, the capacity of the ground network links are fixed
and limited, which results in the constraints as follows.

C7 :
∑
q∈Q

∑
(i,j)∈Eq

y
(n,m)
(i,j),ql

(i,j)
q ≤ lG1,∀(n,m) ∈ EG, (17)

C8 :
∑
q∈Q

∑
(i,j)∈Eq

y
(n,m)
(i,j),ql

(i,j)
q ≤ lG2,∀(n,m) ∈ EA1. (18)

C. Aerial Network Constraints
The channel capacity, power, and available spectrum in

aerial networks are constrained. The wireless channel follows
the path loss model in [43], and channel capacity from aerial
node n to network node m [32] is expressed as

φ(n,m) = b(n,m) log

(
1 +

h−γ
(n,m)p(n,m)

σ2b(n,m)

)
, (19)

where h(n,m) is the distance from aerial node n to node m, γ
represents the constant path loss coefficient, and σ2 indicates
the additive white Gaussian white power spectrum density.

The allocated virtual link rates cannot exceed the channel
capacity, which is expressed as

C9 :
∑
q∈Q

∑
(i,j)∈Eq

y
(n,m)
(i,j),ql

(i,j)
q ≤ φ(n,m),∀(n,m) ∈ EA2,

(20)

where the left side of the inequality is the rate of all services
from aerial node n to network node m, and the right side of
the inequality is the channel capacity. The transmission power
of the aerial node cannot exceed the maximum power, which
is expressed as

C10 :
∑
m∈N

p(n,m) ≤ Pmax,∀n ∈ N. (21)

where Pmax is the maximum power of each aerial node. Fur-
thermore, spectrum resource in the aerial network is limited,
and the allocated spectrum cannot exceed the total network
spectrum, which is expressed as

C11 :
∑

n∈NA

∑
m∈N

b(n,m) ≤ B. (22)

The energy of aerial nodes is limited, which is determined
by the battery capacity. Each individual aerial node that
supports excessive service requests will drain power very
quickly, resulting in an unstable network topology due to
frequent shift work. To stabilize the network topology, load
balance constraint is introduced and expressed as

C12 :

[
max
n∈NA

{Ωn} − min
n∈NA

{Ωn}
]2

≤ ε2, (23)

where |NA| is the number of aerial nodes, Ω̄n is the average
load of aerial nodes, and ε2 represents the critical value of
load variance. The load variance evaluates the difference in
battery consumption across aerial nodes, with a smaller value
indicating a smaller load differential between aerial nodes.

D. MINLP Problem
In this model, we optimize the rate-adaptive SFC orches-

tration and wireless resource to maximize the total network
profit from the network operator’s perspective. Combining
with constraints C1-C12, an MINLP problem is formulated
as follows,

P1 : max
x, y, z, p, b, l

P = R− C

s.t.C1− C12,

C13 : x, y, z ∈ {0, 1},
C14 : p, b, l ≥ 0.
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In this problem, variables x, y, and z are integers and
variables p, b, and l are continuous variables. The problem is
non-convex and NP-hard [44], and its optimal solution cannot
be found within polynomial time. To solve this problem, we
relax the integer variables and several non-convex constraints,
and an iterative alternating optimization algorithm, named op-
timization of SFC embedding, wireless resources, and virtual
link rate (EM-WR-TR optimization), is presented in the next
section.

V. EM-WR-TR OPTIMIZATION

A. Problem Transformation

Both integer variables and continuous variables exist in the
proposed problem, and it is an MINLP problem. Traditional
MINLP optimization algorithms like spatial branch-and-bound
algorithm or Lasserre hierarchy suffers extra complexity for
overwhelmed constraints and variables. Therefore, we trans-
form the integer variables at first. Furthermore, the mutual
multiplication of y and l exists in C9 is non-convex, and y
and l cannot be simultaneously optimized. To jointly optimize
the rate-adaptive SFC orchestration and wireless resource al-
location, an altering optimization approach is proposed where
x, y, z, p, b, and l are optimized iteratively. The details are as
follows.

Firstly, all integer variables are relaxed to continuous vari-
ables. Simply transforming all integer variables into con-
tinuous variables produces inaccuracies and errors in SFC
orchestration and final results. To make up errors brought
from the transformation, we relax zq to a continuous variable
following a similar approach inspired by [45], and zq in C13
can be relaxed as

C13a :

Q∑
q=1

zq −
Q∑

q=1

z2q ≤ 0,∀q ∈ Q, (24)

C13b : 0 ≤ zq ≤ 1,∀q ∈ Q, (25)

where C13a is non-convex and needs to be introduced into the
objective function. The other two integer variables x and y are
relaxed as

C13c : 0 ≤ xf,n,q ≤ 1,∀q ∈ Q,∀f ∈ fq,∀n ∈ N, (26)

C13d : 0 ≤ y
(n,m)
(i,j),q ≤ 1,∀q ∈ Q,∀(n,m) ∈ E,∀(i, j) ∈ Eq.

(27)
Thus, the problem is transformed into

P2 : max
x, y, z, p, b, l

P = R− C + κ∆v

s.t. C1− C12, C13(b− d), C14,
(28)

where ∆v =
∑Q

q=1 zq +
∑Q

q=1

(
zvq
)2 − 2

∑Q
q=1. zvq is the

Taylor expansion of formula C13a. zvq is the value of zq in
vth iteration and κ is the weight of non-integer penalty.

In problem P2, fractional and multiplier forms coexist in C5,
C7, and C8, which are non-convex and intractable. Similar
fractional forms in the objective function can be solved by
Dinkelbach’s algorithm [46] or Charnes-cooper transformation
[47]. However, constraints in this problem are intertwined.
Some fractional terms will be turned into sums and others

into fractions adversely, which cannot solve the problem and
might even make it worse. The main variables in C5, C7, and
C8 are y, z, and l. All fractional and multiplier forms are
composed of y and l, or z and l. Inspired by [48], we find
that P2 can be transformed into a conic optimization problem
under fixed l, which is expressed as

P3 : max
x, y, z, p, b

P = R− C + κ∆v

s.t. C1− C11, C12a,C13(b− d),

p, b ≥ 0.

(29)

Based on P3, the SFC embedding and wireless resources
can be optimized. Then, xv , yv , zv , pv , bv are generated and
ready to be used latterly. In P3, l is served for delay fulfillment
and is part of network cost. To further maximize the objective
function of P3, the P4 is derived. Based on the results of P3,
the transformation rate of each SFC can be optimized by P4,
which is expressed as

P4 : min
l

∑
q∈Q

∑
(n,m)∈EG∪EA1

∑
(i,j)∈EQ

αcm,NG
l(n,m)
q y

(n,m)
(i,j),q+∑

q∈Q

∑
(n,m)∈EA2

∑
(i,j)∈EQ

αcm,NΛ l
(n,m)
q y

(n,m)
(i,j),q,

s.t. C5, C7− C9,

lmax ≥ l(n,m)
q ≥ 0,∀(n,m) ∈ E,∀q ∈ Q.

(30)
In this step, the virtual link rates of each service requests,

e.g., l, are optimized, and the result of vth iteration is denoted
by lv . Let zvq = z∗q and input the l = lv into P3, and execute
the conic programming, then, xv+1, yv+1, zv+1,pv+1,bv+1 are
generated. Then, the iterative alternating optimization can be
conducted successively. Finally, the algorithm is terminated
when the stopping criteria triggers. The specific process of
the algorithm is as follows.

Algorithm 1: Joint SFC Orchestration and Wireless
Resource Allocation Optimization.
Input: Newly arrived service Q, current network

status, and available wireless resources
Output: x, y, z, p, b, l

1 repeat
2 Begin CP with using MOSEK to solve P3;

Output: xv , yv , zv , pv , bv

3 Ṡet x, y, p, b, z as xv , yv , zv , pv , bv parallelly;
4 Begin CP with using MOSEK to solve P4;

Output: lv
5 Compute the revenue P v by xv, yv,pv,bv, zv, lv;
6 v = v + 1;
7 until P v − P v−1 ≤ δ;
8 Obtain xv, yv,pv,bv, zv, lv as x, y, p, b, z;
9 End

1) Initialization: Before each iteration, the type, source,
destination, and the requirements of each service, and current
network state have been known to the central controller.
Then, we assume that the network topology is quasi-stationary
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during each policy decision. To optimize SFC embedding and
wireless resource, the initial value of l is preset. Without loss
of generality, the initial value of virtual link rate is set as

lv =

{
l(i,j)q |l(i,j)q =

2lq
t− tcomp,q

∀q ∈ Q,∀(i, j) ∈ Eq

}
,

(31)
and the v is set as 1.

2) Input the initial lv into P3 with MOSEK, then the xv ,
yv , zv , pv , bv are obtained. zv is the decision variables for
service request, xv, yv are the variables for SFC embedding,
and pv,bv are the allocated power and spectrum for aerial
nodes. Save the value of xv , yv , zv , pv , bv for the step-3.

3) In step-2, the SFC embedding and wireless resource are
optimized jointly, and xv , yv , zv , pv , bv are obtained. Set the
xv , yv , zv , pv , bv as initial value of P4, execute the interior-
point solution by MOSEK, and l is optimized as lv .

4) Identify whether the stopping criteria triggers, i.e., the
solution of the algorithm remains unchanged within δ. If not,
turns to step 2, otherwise, turns to step 5.

5) Normalize the x, y, z to integers and output the optimized
x, y, z, p, b, l.

The details of this algorithm are shown in Algorithm 1.
In the proposed algorithm, the SFC embedding and wireless
resource allocation are optimized first, then, the virtual link
rate is optimized. After several iterations, an optimal value is
obtained.

B. Discussion

To find out the influence of wireless resources, we analyze
the expectation of maximum receiving services under different
bandwidths in this subsection. Without loss of generality, the
arrival of service requests is evenly distributed, and a basic
SFC form containing three VNFs is considered. The service
arrival ratio of ground nodes and aerial nodes are |NG|/|N |
and |NA|/|N | separately. In this subsection, the service is
divided into four types by the source-destination (SD) pair,
which are air nodes to air nodes (A2A), air nodes to ground
nodes (A2G), ground nodes to air nodes (G2A), and ground
nodes to ground nodes (G2G). Each SD pair can be divided
into two subtypes by the network node that supports the second
VNF, i.e., the middle node. It is tedious to discuss the above
eight subcases one by one directly. We find that when the
middle node is set as an aerial node under A2A and A2G,
the SFC’s passing channels are all wireless channels that
originate from aerial nodes. Similarly, ground middle nodes
under A2A and A2G and aerial middle nodes under G2A and
G2G can be discussed together where half of the channels
are from aerial nodes, and others are from ground nodes to
aerial nodes. Additionally, ground middle nodes under G2A
and G2G contain half channels from ground nodes to ground
nodes. The other channels under G2A are from ground nodes
to aerial nodes, and that under G2G are from ground nodes
to ground nodes. Therefore, four different cases should be
considered. As for the first case, the average bandwidth for

aerial networks is B. Then, the average wireless channel
capacity φ̄ is expressed as

φ̄(B) =
B

2
log2

(
1 +

2Pmaxh̄
−γ

σ2B

)
(32)

where h̄ is the statistical distance between aerial nodes and
others. Based on the formulated problem, the network is
subject to computation resource and channel capacity. Consid-
ering the communication capacity constraint only, the expected
maximum receiving service number is expressed as

q̄comm ,1(B) =
φ̄

l̄
=

B

2l̄
log2

(
1 +

2Pmaxh̄
−γ

σ2B

)
, (33)

where l̄ is all services’ average allocated virtual link rate.
Considering the computation capacity constraint only, the
maximum receiving service number is qcomp,1 = Cn/cq where
Cn is the average computation capacity and cq is the average
computation requirement of each service. Combing the compu-
tation constraint and channel constraint, the expected average
maximum service number is

qmax,1(B) = min

[
Cn

cq
,
B

2l̄
log2

(
1 +

2Pmaxh̄
−γ

σ2B

)]
, (34)

which is the function of available bandwidth B. As B → ∞,
the channel capacity arrives at its maximum, which is ex-
pressed as

q̄max,1 = lim
B→∞

q̄max(B)

= lim
B→∞

min

[
B

4l̄
log2

(
1 +

4Pmaxh̄
−γ

σ2B

)
,
Cn

cq

]
= lim

B→∞
min

[
σ2B

4l̄Pmaxh̄−γ
log2

(
1 +

4Pmaxh̄
−γ

σ2B

)
Pmaxh̄

−γ

σ2 l̄
,
Cn

cq

]
= min

[
lim

B→∞

σ2B

4l̄Pmaxh̄−γ
log2

(
1 +

4Pmaxh̄
−γ

σ2B

)
Pmaxh̄

−γ

σ2 l̄
,
Cn

cq

]
= min

[
Pmaxh̄

−γ

σ2 l̄
log2 e,

Cn

cq

]
.

(35)
Adding the constraint of channel capacity from ground

nodes to aerial nodes, and the average maximum receiving
service number of the second case is

q̄max,2 = min

[
Cn

cq
,
Pmaxh̄

−γ

σ2 l̄
log2 e,NGlG2

]
. (36)

Similarly, the average maximum receiving service of the
third case is

q̄max,3 = min

[
Cn

cq
, NGlG2, (NG − 1) lG1

]
, (37)

where the (|NG|−1)lG1 is the capacity constraint from ground
nodes to ground nodes.

The average maximum receiving service of the last case is

q̄max,4 = min

[
Cn

cq
, (NG − 1) lG1

]
. (38)

In conclusion, the average maximum receiving service is
constant when the network setting and service types are
predefined. Although we did not do a dedicated simulation
for this, validation can be conducted by combining the results
in Fig. 4, Fig. 7, and Fig. 8.
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TABLE II
SIMULATION SETTINGS

Parameter Value
N 7
NG 4
NA 3
B 200 MHz
αint 250
αp 100000
αcm,NG

5
αcp,NA

6
αcp,NG

4
Cn 450
Pmax 0.1 W
σ2 -174 dBm
Tq 10-13 evenly distributed
rq 1500-2500 evenly distributed

VI. PERFORMANCE EVALUATION

In this section, we exhibit the simulations to evaluate the
proposed algorithm in terms of convergence, average network
revenue, successfully serving probability, and resource con-
sumption. The main parameters of our scenario are listed in
Table II. The simulation is carried out on a computer with
3.0 GHz Intel Core i5-9500 and 16 GB RAM, and we use
MATLAB 2019a with the MOSEK of CVX to solve this
problem.

In our models, the transmission power, channel spectrum,
virtual link rate, and SFC embedding are jointly optimized to
maximize the network profit. We evaluate the performance and
compare it with three benchmarks as follows.

· Optimization of SFC embedding and wireless resources
(EM-WR optimization): Based on P3, we optimize the
transmission power, channel spectrum, and SFC embed-
ding jointly, which is set as a benchmark to illustrate the
advantage brought by virtual link rate adaption.

· Optimization of SFC embedding (EM optimization): To
illustrate the ascendancy of network reconfigurability,
we only optimize the SFC embedding to simulate the
traditional terrestrial network with fixed capacity.

· Differential evolution (DE) is a famous heuristic algo-
rithm, and its superiority is demonstrated in complex
optimization problems because of its simple computation
processes and fewer parameters. In this paper, we employ
DE as a benchmark to give an intuitive reference, and its
population number is set to 150.

The convergence performance of our proposed algorithm
is depicted in Fig. 3, where the service number is set to 40.
Notably, our algorithm demonstrates rapid convergence within
three iterations when lG1 is set to 75 Mbps, outperforming
the convergence rate observed when doubling lG1. This ob-
servation is visually apparent from Fig. 3, underscoring the
algorithm’s ability to swiftly converge under varying network
resource conditions. Furthermore, Table III presents the aver-
age computation time per request for different total numbers. It
has been demonstrated that all these algorithms have the same
order of magnitude. A comparative analysis between EM-WR-
TR optimization and DE reveals that our proposed algorithm
exhibits faster execution times than DE when the number of

Fig. 3. Iteration and convergence analysis.

TABLE III
COMPUTATION TIME PER REQUESTS (SECONDS)

Number of Service EM-WR EM EM-WR-TR DE
5 0.594 0.430 1.404 2.634

10 0.367 0.287 0.910 1.339
15 0.297 0.245 0.757 0.907
20 0.244 0.226 0.677 0.691
25 0.225 0.216 0.629 0.563
30 0.213 0.210 0.596 0.476
35 0.195 0.213 0.580 0.414
40 0.222 0.207 0.563 0.367
45 0.246 0.208 0.533 0.332

service requests is below 20. However, it is worth mentioning
that the proposed algorithm, owing to its inclusion of two loop
structures within a single iteration, exhibits a slightly longer
convergence time compared to EM-WR optimization and EM
optimization. In contrast, DE employs a fixed population
number and converts all constraints into numerical penalties
within the objective function, mitigating the impact of the total
request number on the average computation time.

Fig. 4 shows the comparison of four algorithms in average
revenue. From Fig. 4, we can see that our proposed algorithm
outperforms the benchmarks by about 10% to 50% in the
performance of average revenue. As the number of service
requests increases, the average revenues of four cases grow
simultaneously. Whereas in a large number of service requests
(beyond 30), the growth of average revenue associated with the
EM-WR-TR approach the EM-WR approach is slowing down,
which means the space for optimization is gradually exhausted
and a platform appears. Similarly, the growth of average
revenue associated with EM approach slows down earlier as
the number of service requests increases to about 25. This is
because the EM-WR-TR optimization triggers the allocation
of wireless resources compared with EM optimization and
unblocks the restriction of virtual link rate between each VNF,
which brings a significant degree of flexibility for service
fulfillment. Unfortunately, as the number of services increases
from ten, the result of DE is not as good as the other three
algorithms, and its average revenue grows continually but
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Fig. 4. The average revenue versus the number of service requests.

Fig. 5. The successfully serving probability versus the number of service
requests.

slowly. After all, the problem is complex and comprises a
large number of multi-dimensional matrix variables, which
easily drives the DE to local maximization. Accordingly,
we evaluate another important performance index, i.e., the
successfully serving probability. Fig. 5 shows the impact of
the number of service requests on the successfully serving
probability where all values equal 100% at the beginning.
Results of DE and EM optimization keep falling as the number
of requests increases, and the latter declines faster. Particularly,
our proposed approach has a more robust service reception
probability than benchmarks, which verifies the efficiency of
our proposed approach.

Fig. 6 shows the average resource costs of each request
under different service number. Obviously, resource costs of
DE are always the highest, and both DE and EM optimization
are in downtrends, which reveals the flaws of DE in multi-
dimensional resource allocation that redundant resources are
allocated to avoid constraint violation. The average resource
cost of EM-WR optimization is higher than that of EM-WR-
TR optimization, and they both continue to increase with the

Fig. 6. The resource costs per completed service request versus the number
of service requests.

Fig. 7. Comparison of average revenue with the varied ratio of each type of
service.

number of service requests until they are nearly identical. Ob-
viously, the average resource costs of EM-WR-TR optimiza-
tion are lowest when the service number is less than 25, which
indicates that EM-WR-TR optimization can receive as many
services as possible while minimizing resource consumption.
Interestingly, resource costs of EM-WR optimization and
EM-WR-TR optimization increase slowly and approach the
same value. This is because network operators must utilize
expensive resources to obtain more revenues, which reduces
the average resource utilization.

Fig. 7 shows the comparison of EM-WR-TR optimization
with varied ratio of service types under different ratios of
service types. We can observe that the average revenue in-
creases with ϕ (before 0.8), which is because that our proposed
algorithm is good at scheduling communication resources. As
the ϕ increases to 0.8, average revenue begins to fall because
of the limitation of transmission resource.

Fig. 8 and Fig. 9 compare four algorithms with varied avail-
able spectrums for data transmission in terms of the average
revenue and successfully serving probability, respectively. The
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Fig. 8. The average revenue versus the available spectrum.

Fig. 9. Comparison of successfully serving probability versus the available
spectrum.

number of service requests is set as 40. Fig. 8 and Fig. 9
show that our proposed EM-WR-TR optimization algorithm
outperforms the other three algorithms. This is because the
proposed algorithm enables both wireless resource alloca-
tion and rate-adaptive SFC orchestration. Compared with the
EM-WR optimization, the proposed algorithm can minimize
resource costs and receive more services. As the available
spectrum increases, the average revenue and successfully
serving probability increase simultaneously. Two performance
measurements in Fig .8 and Fig. 9 reveal that the DE is only
efficient when the action space is small and its performance
increases gradually as the available spectrum diminishes.

VII. CONCLUSION

In this paper, we have proposed an SDN/NFV-based recon-
figurable SAGIN network architecture, and based on which,
rate-adaptive SFC orchestration and wireless resource al-
location are investigated comprehensively. Considering the
resource limitation of network infrastructures and service
requirements, an MINLP problem has been formulated to

maximize the network profit. Then, successive convex opti-
mization is utilized to transform the proposed problem into
a tractable one, and an iterative altering algorithm is pro-
posed to optimize the SFC embedding, virtual link rate, and
wireless resource jointly. Extensive simulations have been
carried out, and the results have illustrated the effectiveness
of the proposed algorithm in SFC orchestration and resource
allocation. Specifically, the EM-WR approach achieves a lower
average computation time than others and is effective in
highly dynamic network scenarios. The proposed architecture
and EM-WR-TR approach lay a foundation to future studies
related to on-demand service provision and wireless resource
scheduling in SAGINs. In future work, we will investigate the
service-oriented mobile user access and handover in SAGINs
deeply.
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