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for FDD Massive MIMO Systems
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Abstract—This paper proposes a two-stage beamforming (TSB)
scheme with user scheduling for FDD massive MIMO. The
developed TSB scheme designs the analog pre-beamformer and
schedules the users using statistical channel state information
(S-CSI), reducing the overhead of the pilot and the feedback.
Particularly, in the one-ring local scattering channel model, the
pre-beamformer design and user scheduling problem is formulated
as a 0-1 quadratic constrained quadratic programming (QCQP),
which is further linearized to a mixed integer linear programming
(MILP). In the multiple scattering clusters channel model, we
design the pre-beamformer and schedule the users based on
graph theory, where the chromatic number of the equivalent
matrix represents the minimum number of orthogonal pilots.
Then, we propose an iterative beam selection and user scheduling
(I-BSUS) scheme that approximates the minimum pilot constraint
by the maximum vertex degree. Moreover, the net spectrum
efficiency (NSE) is improved using a multi-user digital precoder,
which depends on the effective instantaneous CSI (EI-CSI).
Simulation results validate the superiority of the proposed scheme
in enhancing the NSE over the existing schemes.

Index Terms—Massive MIMO, FDD, statistical CSI, beam
selection, user scheduling.

I. INTRODUCTION

FOR the sixth generation (6G) and beyond communication

networks, various technologies have emerged, such as vir-

tual reality, augmented reality, reconfigurable intelligent surface

(RIS), integrated sensing and communications (ISAC), space-

air-ground integration network (SAGIN), network-assisted full-

duplex (FD), and channel prediction [1]–[6]. These emerging

technologies promise higher spectral and energy efficiency,

improved reliability and low latency, and massive connectivity,

revolutionizing how we communicate and interact with the

world around us. These technologies are advancing wireless

communication from massive multiple-input multiple-output

(MIMO) setups that require many antennas to transmit and

receive signals to RIS-based manipulation of electromagnetic

waves. Although all 6G is closely related to massive MIMO

technology, fulfilling the requirements requires the instanta-

neous channel state information (I-CSI) to be perfectly known

This work was supported in part by the Natural Science Foundation of China
under Grant 61771257, 62101282, and 62371249. (Corresponding authors:
Yunchao Song.)

Tianbao Gao, Chen Liu, Yunchao Song, and Huibin Liang are with the
College of Electronic and Optical Engineering, Nanjing University of Posts
and Telecommunications, Nanjing, 210023, China (e-mail: 2018020231, liuch,
songyc, 2021020305@njupt.edu.cn).

Zhisheng Yin, and Nan Cheng are with State Key Lab. of ISN and School
of Telecommunications Engineering, Xidian University, Xi’an, 710071, China
e-mail: (zsyin@xidian.edu.cn, dr.nan.cheng@ieee.org).

at the transmitter. Obtaining downlink I-CSI involves downlink

pilot training and uplink feedback, with the overhead for

downlink I-CSI estimation being proportional to the number of

antennas at the base station (BS). Nevertheless, this imposes

a high overhead of pilots and feedback in massive MIMO

systems due to the hundreds or thousands of antennas in the

BS. Furthermore, the delayed or expired I-CSI may degrade

the system performance, making it crucial to overcome the

challenges in acquiring I-CSI to promote massive MIMO

technology in next-generation communication systems [7], [8].

In a time division duplex (TDD) system [9]–[11], the uplink

and downlink channels operate on the same frequency and have

reciprocity. The downlink I-CSI is obtained from the estimated

uplink I-CSI. The number of pilots required for uplink I-CSI

estimation is equal to the number of user antennas, which

is much smaller than the number of antennas in the BS. In

frequency division duplex (FDD) systems, channel reciprocity

is no longer applicable, which makes it challenging to estimate

the downlink I-CSI. Despite its lack of channel reciprocity,

the FDD system is still widely studied [12], [13] due to its

appealing delay sensitivity and performance in symmetrical

services. However, the overhead associated with pilots and

feedback for downlink communication in massive MIMO FDD

systems is excessive, reducing spectral efficiency. To address

this issue, various approaches [14]–[16] have been employed,

aiming to reduce the overhead associated with downlink I-CSI

estimation, leading to improved spectral efficiency and system

performance in FDD systems.

In order to exploit the sparsity of spatially correlated

channels, compressed sensing (CS) [17], [18] and deep learning

(DL) [19]–[21] aided channel estimation is a significant

approach to dealing with the challenges of I-CSI estimation.

In [17] the authors developed a CS-based channel estimation

scheme that utilizes a conventional least squares approach

and CS technique simultaneously, and [18] enhanced the

performance of traditional CS by introducing a closed-loop

compressive CSI estimation framework with 1-bit feedback.

Deep learning-based schemes have received extensive attention

due to their ability to solve nonlinear problems effectively and

having low complexity. Typical examples are the novel off-grid

model [19], deep learning CS channel estimation [20], and a

two-tier based channel estimation [21]. The aforementioned

methods for reconstructing the full-dimensional I-CSI present

challenges, including computational complexity, pilot and

feedback overhead, and the potential for channel estimation
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errors. These challenges can have a significant impact on the

performance of wireless communication systems.

To address these issues due to directly estimating the full-

dimensional I-CSI, [22] proved that the angle reciprocity

of FDD systems is useful to reduce the overhead of pilots

and feedback. The angle reciprocity is applicable in a wide

range of frequencies. The uplink statistical CSI (S-CSI) is

obtained through the long-term estimation, and the downlink

S-CSI, which is constant within the coherence time, can be

easily extrapolated from the uplink S-CSI by using the angle

reciprocity of the uplink and downlink channel. Therefore,

exploiting the S-CSI, [22] proposed a two-stage beamforming

scheme named joint spatial division and multiplexing (JSDM),

which can achieve significant savings in both pilots and

I-CSI feedback. Subsequent works aimed to enhance the

performance of JSDM regarding user grouping [23], [24] and

pre-beamformers [25], [26]. However, user grouping schemes

cause signal space overlap between groups, resulting in a loss

of signal space during pre-beamforming. Instead of a user

grouping scheme, [27] introduced a neighbor-based JSDM

(N-JSDM), which fully utilizes the signal space to enhance

performance. Besides, when the number of antennas in the

BS is large, the downlink covariance matrix of users can

be approximated by the columns of the discreet Fourier

transformation (DFT) matrix. This approximation enables the

BS to design the pre-beamforming matrix through codebook-

based beam selection, which can reduce the computational and

implementation complexity [28].

The radio frequency (RF) chains required by the system in

[22]–[27] equal the number of columns of the pre-beamformer.

However, the number of RF chains in a system is often limited,

and exceeding/falling short of the required number results in

hardware overhead waste/heavy. Hence, to prevent significant

performance loss, the number of RF chains must be equal to

or greater than the number of users served simultaneously by

the BS. When the number of RF chains is more than twice the

number of service users, hybrid precoding can maintain the

performance of full digital precoding while simultaneously

limiting the number of users BS serves. Additionally, as

the number of users in the system increases, the spectrum

efficiency of the system declines due to severe interference

between the users. Therefore, carefully selecting users with

favorable channel conditions is vital in mitigating interference

and improving system capacity. Given that in the extended

research of JSDM [23], user scheduling is considered, user

scheduling is indispensable in DFT codebook-based beam

selection.

This paper proposes a two-stage (TSB) scheme that com-

prises analog pre-beamforming and multi-user digital precoding

to reduce the overhead of pilots and feedback significantly.

The pre-beamformer is designed through codebook-based beam

selection, which is pilot-limited since the pilot length affects the

system’s net spectral efficiency (NSE). In addition to designing

the pre-beamformer, we consider the user scheduling problem

to ensure good system performance. Since the number of

scheduling users is limited by the number of RF chains in the

system, the pre-beamformer design involves beam selection

and user scheduling (BSUS). Thus, this paper proposes BSUS

schemes under a one-ring local scattering model and a multiple

scattering cluster model to sparsify the channel and schedule

users adaptively. The main contributions of this work are

summarized as follows:

1) We analyze the sparsity characteristics of effective I-CSI

(EI-CSI) using DFT codebook-based pre-beamforming

design. A criterion is established that neglect channel

degrees of freedom with low energy. Subsequently, we

propose BSUS schemes for one-ring local scattering model

and the multiple scattering clusters model, respectively.

2) In the one-ring local scattering model, the designed

BSUS scheme aims to maximize the received energy

while satisfying both the restricted RF chains and pilot

constraints. The BSUS scheme is formulated as a 0-1

quadratic constrained quadratic programming (QCQP)

problem, which is challenging to find the optimal solution.

To address this issue, we linearize the 0-1 QCQP problem

into a mixed-integer linear programming (MILP) problem

with the same optimal value as the original 0-1 QCQP

problem. MILP problems can use efficient MILP solvers

to find the optimal solution.

3) We design the BSUS scheme based on graph theory for the

multiple scattering clusters model. The minimum number

of orthogonal pilots (NOP) equals the chromatic number

of the graph generated by the equivalent I-CSI (EI-CSI).

To approximate the chromatic number of the graph, we

use the maximum vertex degree, which serves as an upper

bound for the chromatic number. Finally, we propose an

iterative BSUS (I-BSUS) scheme to find the minimum

pilots, where the pilot constraint is represented by the

maximum vertex degree.

4) We propose a circular pilot matrix and an iterative

pilot allocation (IPA) scheme for the EI-CSI structure

of the two channel models to assist the sparse EI-CSI

estimation. The IPA scheme is not related to the previously

mentioned I-BSUS scheme. Although the I-BSUS scheme

can determine whether the pilot exceeds the limit, it does

not provide the pilot matrix design. The IPA scheme based

on the non-zero random distribution characteristics of the

EI-CSI.

The remainder of the paper is organized as follows. Sec-

tion (II) presents the system model. Section (III) describes

the spatially correlated sparse channel based on an established

codebook and details the beam selection and user scheduling

process with a limited pilot in one-ring local scattering and

multiple scattering clusters models. Section (IV) describes the

estimation of the sparse EI-CSI by pilots and feedback and

presents the performance of multi-user digital precoding, and

Section (V) presents the simulation results. Finally, Section (VI)

concludes this paper.

Notation: Lower-case boldface letter 𝒂 is a column vector,

and upper-case boldface letter 𝑨 is a matrix. Non-bold letters

a, A are scalar values. 𝒂𝑖 is the 𝑖-th column of matrix 𝑨,

and 𝑎𝑖 is the 𝑖-th value of vector 𝒂. (·)T, (·)H, and (·)† denote

transpose, conjugate transpose, and pseudo-inverse, respectively.

‖𝑨‖F and |𝑨| are the Frobenius norm and determinant of

𝑨. The complex number field is represented by C, and
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the expectation of a complex number is denoted by E {·}.
𝑰𝑁 denotes a 𝑁 × 𝑁 identity matrix, and CN (𝒂, 𝑨) is a

complex Gaussian vector with mean 𝒂 and covariance matrix

𝑨. 𝑐𝑎𝑟𝑑 (𝐴) represents the number of elements in set 𝐴. 𝑐𝑜𝑙 (𝑨)
represents the number of columns of 𝑨.

II. SYSTEM MODEL

Consider a single-cell FDD massive MIMO system, where

a central BS serves 𝐾 single-antenna users. The BS has a

uniform linear array (ULA) with 𝑀 � 𝐾 antennas and 𝑁𝑅𝐹
RF chains. The spacing between adjacent antennas of ULA is

set to 𝜆/2, where 𝜆 is the carrier wavelength. The downlink

transmission is also considered.
Fig. 1 illustrates a two-stage beamforming structure com-

prising an analog pre-beamforming matrix 𝑭 and a multi-

user digital precoding matrix 𝑾. The first stage (analog pre-

beamformer), which only relies on S-CSI 𝑹, is implemented

only once in the entire coherence time. The analog pre-

beamformer design aims to sparsify the channel matrix, thereby

reducing the overhead of downlink orthogonal pilots and uplink

I-CSI feedback. Typically, the analog pre-beamforming matrix

𝑭 is implemented using the phase shifters which satisfy the

magnitude constraint
��[𝑭]𝑖, 𝑗 �� = 1√

𝑀
[29].
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Precoding
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Fig. 1: Two-Stage Beamforming Architecture.

Taking advantage of the sparsity of the spatially correlated

channel, we design an analog pre-beamforming matrix 𝑭 to

sparsify the EI-CSI 𝑯̄ as

𝑯̄ = 𝑯H𝑭, (1)

where 𝑯 = [𝒉1, · · · , 𝒉𝐾 ] is the channel between users and the

BS, and 𝒉𝑘 is the spatial channel between user 𝑘 and the BS.

The downlink pilots are used to estimate the sparse EI-CSI, and

only the non-zero values of the EI-CSI must be fed back to the

BS. The number of orthogonal pilots in the EI-CSI estimation

is far less than the number of antennas 𝑀 .
Based on the estimated EI-CSI, the second stage (multi-user

digital precoding) is designed for data symbol transmission. We

use linear precoding techniques to design the digital precoder

𝑾. The received signal of user 𝑘 is written as

𝑦𝑘 = 𝒉̄𝑘𝑾𝒔 + 𝑛𝑘 , (2)

where 𝒉̄𝑘 is the sparse channel vector between user 𝑘 and the

BS. The overall EI-CSI is formulated as 𝑯̄ =
[
𝒉̄𝑇1 , · · · , 𝒉̄𝑇𝐾

]𝑇
.

For a total transmitted power 𝑃 at BS, the overall transmitted

signal 𝒔 satisfies E
{
𝒔𝒔H

}
= 𝑃
𝐾 𝑰𝐾 , 𝑛𝑘 ∼ CN (

0, 𝜎2) is additive

white Gaussian noise.
Assuming no line of sight channel, we have 𝒉𝑘 ∼

CN (0, 𝑹𝑘 ), where 𝑹𝑘 = E
[
𝒉𝑘𝒉

H
𝑘

]
is the channel covariance

matrix of user 𝑘 . Using the Karhunen-Loeve representation,

the channel vector 𝒉𝑘 can be written as

𝒉𝑘 = 𝑹
1
2
𝑘 𝒘𝑘 , (3)

where the entries of 𝒘𝑘 are i.i.d. complex Gaussian variables

with zero-mean and unit-variance.

Fig. 2(a) depicts the widely used one-ring local scattering

model (macro cell or suburban statistical channel features

model). The paths of user 𝑘 are distributed in a scattering ring

of radius 𝑟 , where 𝜃𝑘 and Δ𝑘 are the center angle and angular

spread (AS), respectively. The channel covariance matrix 𝑹𝑠𝑖,𝑘
is expressed as

𝑹𝑠𝑖,𝑘 =
∫ 𝜃𝑘+Δ𝑘

𝜃𝑘−Δ𝑘

𝛾 (𝑑𝜃) 𝒂 (𝜃) 𝒂 (𝜃)H , (4)

where 𝛾 (𝑑𝜃) is the channel power azimuth spectrum (PAS)

and
∫ 𝜃𝑘+Δ𝑘

𝜃𝑘−Δ𝑘
𝛾 (𝑑𝜃) = 1, 𝒂 (𝜃) = [

1, · · · , 𝑒 𝚥 𝜋 (𝑀−1) sin(𝜃) ]𝑇 .

Fig. 2(b) illustrates the multiple scattering clusters model

for millimeter-wave channels. There are 𝐶𝑘 scattering clusters

between user 𝑘 and the BS, and the channel covariance matrix

𝑹𝑚𝑢,𝑘 is expressed as

𝑹𝑚𝑢,𝑘 =
1
𝐶𝑘

𝐶𝑘∑
𝑐=1

𝑹𝑐 , (5)

where 𝑹𝑐 is similar to Eq. (4).

III. SPATIALLY CORRELATED CHANNEL SPARSIFICATION

BY BEAM SELECTION AND USER SCHEDULING

This section presents the BSUS schemes with a restricted

number of pilots 𝑁 for the one-ring local scattering and multiple

scattering clusters models. Specifically, the BSUS schemes

account for the problem of user scheduling when the total

number of users in the cell significantly exceeds the number

of users the system can serve simultaneously.

By exploiting the sparsity of the spatially correlated channel

matrix 𝑯, an analog pre-beamforming matrix 𝑭 is designed

to sparsify the EI-CSI 𝑯̄, which can effectively reduce the

overhead of pilots and feedback in downlink channel estimation.

To make the correlated channel sparse, we have

𝒉H
𝑘 𝒇𝑙 = 0, (6)

where 𝒇𝑙 is the 𝑙-th column of the analog pre-beamforming

matrix 𝑭. By substituting 𝒉𝑘 = 𝑹
1
2
𝑘 𝒘𝑘 into Eq. (6) and noticing

that the random vector 𝒘𝑘 is unknown to the transmitter, 𝒇𝑙
should satisfy

𝑹
1
2
𝑘 𝒇𝑙 = 0. (7)

Thus, 𝑭 only depends on the S-CSI 𝑹, which is constant in a

coherence time and assumed to be known at the BS [22], [27],

[28]. To simplify the pre-beamformer design, 𝑭 is designed

using the DFT codebook, i.e., 𝑭 is composed of the columns

of the DFT matrix. The DFT orthogonal codebook is given by

S =

{
𝒆𝑚 : 𝒆

(
2𝑚
𝑀

− 1
)
, 𝑚 ∈ M

}
, (8)

where M = {1, 2, · · · , 𝑀} denotes the beam indices, and

𝒆 (𝑥) = 1√
𝑀

[
1, · · · , 𝑒− 𝚥 𝜋 (𝑀−1)𝑥 ]𝑇 , where 𝑥 = sin (𝜃). S forms

an orthogonal basis for the received signal space. We set S as

the DFT codebook and select the beam vectors to form the

pre-beamforming matrix 𝑭.
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Fig. 2: (a) One-ring Local Scattering Model, (b) Multiple Scattering Clusters Model.

To obtain the optimal EI-CSI 𝑯̄, we analyze its sparse

structure characteristics before designing 𝑭. In order to

satisfy Eq. (7), we evaluate the value of 𝑹
1
2
𝑘 𝒆𝑚. Moreover,

to observe the sparse characteristics more clearly, we ex-

amine the properties of function 𝑓 =
��𝒆 (𝑥1)H 𝒆 (𝑥2)

��, where

𝒆 (𝑥1)H = 𝒂 (𝜃)H represents a part of the S-CSI 𝑹. The sparse

structure characteristics of EI-CSI follow the sparse structure

characteristics of function 𝑓 . Note that for any 𝑥1 and 𝑥2, 𝑓
is a periodic function with a period of 2

𝑀 , and its peak value

gradually decreases with the increase of |𝑥1 − 𝑥2 |. As shown

in Fig. 3, 𝑓 has the maximum value when |𝑥1 − 𝑥2 | = 0 and

equals zero when |𝑥1 − 𝑥2 | = 2
𝑀 · 𝑔, where 𝑔 is any integer.

Additionally, 𝑓 is much smaller than the maximum peak 1
with the increase of |𝑥1 − 𝑥2 |. Indeed, 𝑓 is considered to be 0
when 𝑓 ≤ 𝜖 , where 𝜖 (less than noise power) is a small value.

Fig. 3: Properties of function 𝑓 =
��𝒆 (𝑥1)H 𝒆 (𝑥2)

��, 𝑀 = 128.

The periodicity of function 𝑓 follows from the periodicity

of DFT codeword 𝒆 (𝑥) and the value of function 𝑓 depends

only on the difference of |𝑥1 − 𝑥2 |. Signals that arrive along

paths with angular separation larger than 2/𝑀 are considered

approximately orthogonal. Fig. 3 reveals that when the differ-

ence of |𝑥1 − 𝑥2 | is large, the value of 𝑓 decreases rapidly and

tends to zero. By designing pre-beamforming based on a DFT

codebook, the EI-CSI 𝑯H𝑭 is sparse.

To sparsify the channel 𝑯 shown in Eq. (7), the elements

of 𝑯 satisfying ����𝑹 1
2
𝑘 𝒆𝑚

����2
≤ 𝜖, (9)

are assumed to be zeros. This accounts for the negative impact

of the DFT matrix, which neglects certain channel degrees

of freedom that contribute a relatively low proportion of the

total channel energy. This effectively reduces the overhead of

downlink channel estimation and uplink feedback, significantly

increasing the received energy.

A. Problem Formulation

Similar to [28], we use the received energy maximization as

the design criterion to improve spectral efficiency. Therefore,

the pre-beamformer design must meet two constraints: the

number of beams 𝑐𝑜𝑙 (𝑭) should be less than the number of

RF chains 𝑁𝑅𝐹 , and the NOP 𝜇 must be less than the restricted

number of pilots 𝑁 . Given the DFT orthogonal codebook S, we

formulate the pre-beamformer design problem as the following

optimized model [30]:

(P1) max
𝑭
E

{��𝑯H𝑭
��2

F

}
(10a)

𝑠.𝑡. 𝑐𝑜𝑙 (𝑭) ≤ 𝑁𝑅𝐹 (10b)

𝜇 ≤ 𝑁 (10c)

𝒇𝑙 ∈ S. (10d)

The I-CSI 𝑯 is unknown at the BS in the analog pre-

beamforming stage prior to the I-CSI estimation. In order

to address this issue, 𝑯 is replaced with the S-CSI 𝑹 using

the following transformation. For the convenience of symbol

representation, we assume that the pre-beamforming matrix 𝑭
has 𝐿 columns and then

E

{��𝑯H𝑭
��2

F

}
= E

{
𝑡𝑟

(
𝑯H𝑭

(
𝑯H𝑭

)H
)}

=
𝐾∑
𝑘=1

𝐿∑
𝑙=1
E
{
𝒉H
𝑘 𝒇𝑙 𝒇

H
𝑙 𝒉𝑘

}
=

𝐾∑
𝑘=1

𝐿∑
𝑙=1
E

{
𝒘H
𝑘 𝑹

1
2
𝑘 𝒇𝑙 𝒇

H
𝑙 𝑹

1
2
𝑘 𝒘𝑘

}

=
𝐾∑
𝑘=1

𝐿∑
𝑙=1
E

{
𝑡𝑟

(
𝑹

1
2
𝑘 𝒇𝑙 𝒇

H
𝑙 𝑹

1
2
𝑘 𝒘𝑘𝒘

H
𝑘

)}

=
𝐾∑
𝑘=1

𝐿∑
𝑙=1

𝑡𝑟

(
E

{
𝑹

1
2
𝑘 𝒇𝑙 𝒇

H
𝑙 𝑹

1
2
𝑘 𝒘𝑘𝒘

H
𝑘

})
(𝑎)
=

𝐾∑
𝑘=1

𝐿∑
𝑙=1

𝑡𝑟
(
𝒇𝑙 𝒇

H
𝑙 𝑹𝑘

)
,

(11)
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where (𝑎) can be obtained from E {𝑨𝑩} = E {𝑨} E {𝑩}
for independent 𝑨 and 𝑩. Therefore, the design of the pre-

beamforming matrix only relies on S-CSI 𝑹.

B. One-ring Local Scattering Model

Based on the beam 𝒆𝑚 definition presented in the previous

section, we can infer the sparse structure characteristics of

EI-CSI in advance. Specifically, EI-CSI is sparse, with any

element whose value is less than 𝜖 set to zero. This accounts

for the negative impact of the DFT codebook, which ignores

channel degrees of freedom with very low channel energy.

Consequently, there is no need to use pilots to estimate these

zero elements, reducing the overhead of downlink pilots and

uplink feedback.

Let matrix 𝑪 denote the weights between beams in S and

the S-CSI of user 𝑘 , i.e. 𝑡𝑟
(
𝒆𝑚𝒆

H
𝑚𝑹𝑠𝑖,𝑘

)
. The element 𝑐𝑘,𝑚 is

expressed as

𝑐𝑘,𝑚 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

����𝑹 1
2
𝑠𝑖,𝑘 𝒆𝑚

����2
,

����𝑹 1
2
𝑠𝑖,𝑘 𝒆𝑚

����2
> 𝜖 ;

0,
����𝑹 1

2
𝑠𝑖,𝑘 𝒆𝑚

����2
≤ 𝜖 .

(12)

For the BSUS scheme, we employ two variable vectors

𝒃 = [𝑏1, · · · , 𝑏𝑀 ]T and 𝒖 = [𝑢1, · · · , 𝑢𝐾 ]T to describe the

state of beam selection and user scheduling, respectively. The

definition of 𝑏𝑚 and 𝑢𝑘 are given as

𝑏𝑚 =

{
1, beam 𝑚 is selected;
0, beam 𝑚 is not selected,

(13)

𝑢𝑘 =

{
1, user 𝑘 is scheduled;
0, user 𝑘 is not scheduled,

(14)

where 𝑚 ∈ M and 𝑘 ∈ K. Finally, the beams 𝑏𝑚 that 𝑏𝑚 = 1
are constructed as the pre-beamforming matrix, and the users

𝑢𝑘 that have 𝑢𝑘 = 1 are scheduled.

The received energy in Eq. (11) is represented by the beam

selection state vector 𝒃, the user scheduling state vector 𝒖, and

the weight matrix 𝑪, which are expressed as

𝐾∑
𝑘=1

𝐿∑
𝑙=1

𝑡𝑟
(
𝒇𝑙 𝒇

H
𝑙 𝑹𝑘

)
=

𝐾∑
𝑘=1

𝑀∑
𝑚=1

𝑢𝑘𝑏𝑚𝑐𝑘,𝑚 = 𝒖T𝑪𝒃. (15)

The first constraint in Eq. (10b) means that the number of

selected beams 𝑐𝑜𝑙 (𝑭) is limited by the number of RF chains.

The selected beams are represented by the beam selection state

vector 𝒃 with 𝑏𝑚 = 1, and Eq. (10b) can be formulated as

𝑀∑
𝑚=1

𝑏𝑚 ≤ 𝑁𝑅𝐹 . (16)

The second constraint in Eq. (10c) shows that the number

of pilots 𝑁 limits the NOP 𝜇. In the BSUS scheme, the angles

of users are first arranged in ascending order, i.e., 𝜃1 ≤ 𝜃2 ≤
· · · ≤ 𝜃𝐾 . Then, the EI-CSI 𝑯̄ is a banded matrix in which

all non-zero elements fall in a banded region centered on the

main diagonal. The NOP 𝜇 equals the bandwidth of 𝑯̄, i.e., the

maximum number of non-zero values in each row. To express

the limited NOP 𝜇 presented in Eq. (10c), we define a Boolean

matrix 𝑪̄ and the (𝑘, 𝑚)-th element of the matrix 𝑪̄ is given

as

𝑐𝑘,𝑚 =

{
1, 𝑐𝑘,𝑚 ≠ 0;
0, else.

(17)

The number of non-zero values in the 𝑘-th row is∑𝑀
𝑚=1 𝑢𝑘𝑏𝑚𝑐𝑘,𝑚, and the NOP 𝜇 can be formulated as

𝜇 = max
𝑘∈K

𝑀∑
𝑚=1

𝑢𝑘𝑏𝑚𝑐𝑘,𝑚. (18)

The constraint in Eq. (10c) 𝜇 ≤ 𝑁 can be rewritten as

𝑀∑
𝑚=1

𝑢𝑘𝑏𝑚𝑐𝑘,𝑚 ≤ 𝑁,∀𝑘 ∈ K . (19)

Based on the above description, the optimization problem

in Eq. (10a)-(10d) can be reformulated into a 0-1 integer

programming setup as presented below:

(P2) max
𝒖,𝒃

𝐾∑
𝑘=1

𝑀∑
𝑚=1

𝑢𝑘𝑏𝑚𝑐𝑘,𝑚 (20a)

𝑠.𝑡.
𝑀∑
𝑚=1

𝑏𝑚 ≤ 𝑁𝑅𝐹 (20b)

𝑀∑
𝑚=1

𝑢𝑘𝑏𝑚𝑐𝑘,𝑚 ≤ 𝑁,∀𝑘 ∈ K (20c)

𝑏𝑚 = {0, 1} ,∀𝑚 ∈ M (20d)

𝑢𝑘 = {0, 1} ,∀𝑘 ∈ K . (20e)

The P2 is a 0-1 QCQP problem. Let 𝒙 =
[
𝒖T, 𝒃T

]T
, we

rewrite the QCQP problem in the general form:

(P3) min
𝒙

𝒙T𝑸𝒙 (21a)

𝑠.𝑡. 𝒂T𝒙 ≤ 𝑁𝑅𝐹 (21b)

𝒙T𝑸̄𝑘𝒙 ≤ 𝑁,∀𝑘 ∈ K (21c)

𝑥𝑖 = {0, 1} ,∀𝑖 = 1, · · · , (𝐾 + 𝑀) , (21d)

where

𝑸 =

[
0𝐾×𝐾 −𝑪
0𝑀×𝐾 0𝑀×𝑀

]
, 𝑸̄𝑘 =

[
0𝐾×𝐾 𝑪̄𝑘
0𝑀×𝐾 0𝑀×𝑀

]
. (22)

0𝐾×𝐾 , 0𝑀×𝐾 , 0𝑀×𝑀 are 𝐾 × 𝐾 , 𝑀 × 𝐾 , 𝑀 × 𝑀 dimensional

zero matrices, respectively. 𝑪̄𝑘 is constructed according to 𝑪̄,

and its 𝑘-th row is the same as 𝑪̄ while the other elements are

zero. 𝒂 = [0, · · · , 0︸���︷︷���︸
𝐾

, 1, · · · , 1︸���︷︷���︸
𝑀

]T.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3311044

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 14:42:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, JUNE 2023 6

Finding the optimal solution for the 0-1 QCQP problem is

challenging. Therefore, we linearize the 0-1 QCQP problem in

Eq. (21a)-(21d) as a MILP problem, which is easier to solve.

(P4) min
𝒙,𝒛,𝒔,𝒕𝑘

𝒓T𝒔 − 𝐴𝒓T𝒙 (23a)

𝑠.𝑡. 𝑸𝒙 − 𝒛 − 𝒔 + 𝐴𝒓 = 0 (23b)

𝒛 ≤ 2𝐴 (𝒓 − 𝒙) (23c)

𝒂T𝒙 ≤ 𝑁𝑅𝐹 (23d)

𝑸̄𝑘𝒙 − 𝒕𝑘 ≤ 0,∀𝑘 ∈ K (23e)

𝒓T 𝒕𝑘 ≤ 𝑁,∀𝑘 ∈ K (23f)

𝑥𝑖 = {0, 1} ,∀𝑖 = 1, 2, · · · , (𝐾 + 𝑀) (23g)

𝒛 ≥ 0, 𝒔 ≥ 0, (23h)

where 𝐴 = ‖𝑸‖∞, 𝐴̄𝑘 = ‖𝑸̄𝑘 ‖∞ and 𝒓 is an all-one vector.

Theorem 1. 𝒙∗ is the optimal solution to problem Eq. (21a)-
(21d) if and only if there exist 𝒛∗, 𝒔∗, 𝒕∗𝑘 such that

(
𝒙∗, 𝒛∗, 𝒔∗, 𝒕∗𝑘

)
is the optimal solution to Eq. (23a)-(23h).

Proof. See Appendix A. �

The MILP problem presented in Eq. (23a)-(23h) can be

solved using the existing optimization toolboxes. The optimal

user scheduling 𝒖 and beam selection 𝒃 can be derived from

𝒙.

C. Multiple Scattering Clusters Model

In the BSUS scheme of the multiple scattering clusters

model, we also aim to maximize the received energy to improve

the spectral efficiency while ensuring that the two constraints

outlined in (10b) and (10c) are satisfied. Unlike the quadratic

pilot constraint in the one-ring local scattering model, the

NOP 𝜇 in the multiple scattering clusters model takes on a

complex and nonlinear form due to the new structure of the

EI-CSI, where the non-zero elements are randomly distributed.

In this section, the BSUS scheme is designed using graph

theory, where the chromatic number of EI-CSI represents the

minimum NOP. Then, we propose an I-BSUS scheme that

approximates the pilot constraint with the maximum vertex

degree to find the minimum NOP.

The weight matrix 𝑨, which represents the received energy

of the S-CSI of user 𝑘 to the beams in S, is initially provided,

and its element 𝑎𝑘,𝑚 is expressed as

𝑎𝑘,𝑚 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

����𝑹 1
2
𝑚𝑢,𝑘 𝒆𝑚

����2
,

����𝑹 1
2
𝑚𝑢,𝑘 𝒆𝑚

����2
> 𝜖 ;

0,
����𝑹 1

2
𝑚𝑢,𝑘 𝒆𝑚

����2
≤ 𝜖 .

(24)

Whether the beams and users are selected is described using

the beam selection state variable 𝑏𝑚 and the user scheduling

state variable 𝑢𝑘 , as defined in (13) and (14), respectively. The

received energy is expressed as

max
𝒖,𝒃

𝐾∑
𝑘=1

𝑀∑
𝑚=1

𝑢𝑘𝑏𝑚𝑎𝑘,𝑚. (25)

Additionally, the BSUS scheme must satisfy two constraints:

(1) the number of beams 𝑐𝑜𝑙 (𝑭) must be less than the number

of RF chains 𝑁𝑅𝐹 , and (2) the NOP 𝜇 must be less than

the minimum pilot constraint 𝑁 . The first constraint can be

expressed as
𝑀∑
𝑚=1

𝑏𝑚 ≤ 𝑁𝑅𝐹 , (26)

which is the same as in the one-ring local scattering model.

In the multiple scattering clusters model, due to the random

arrangement of non-zero elements in the EI-CSI 𝑯̄, it is not

possible to directly calculate NOP using 𝑯̄ = 𝑯H𝑭 as described

in (20c). For the second constraint, we use the chromatic

number theory of the graph to calculate the minimum NOP in

the multiple scattering clusters model, as described below.

Theorem 2. The minimum NOP can be represented by the
chromatic number of the corresponding graph of the equivalent
matrix 𝑯̄ = 𝑯H𝑭.

Proof. G1: The minimum NOP is equivalent to the number of

orthogonal columns in 𝑿 that satisfy

𝑿H
𝑛𝑧,𝑘𝑿𝑛𝑧,𝑘 = 𝑰, 𝑘 ∈ K, (27)

where 𝑿𝑛𝑧,𝑘 is selected by 𝑿 and contains the index of the

non-zero value of the 𝑘-th row of 𝑯̄.

G2: The chromatic number of the corresponding graph of 𝑯̄
equals the number of columns of 𝑿 such that any two columns

of 𝑿𝑛𝑧,𝑘 are different.

Let 𝑿1 be the solution of G1, then any two columns in

𝑿1,𝑛𝑧,𝑘 are different, so 𝑿1 is also the solution to G2. The

minimum number of distinct columns in 𝑿1 is not less than

the number of distinct columns of 𝑿 (denoted as 𝜇) satisfying

G2.

Furthermore, we can find a solution 𝑿2 that satisfies G2,

and 𝑿2 is expressed as

𝑿2 =
[
𝒗1, 𝒗2, · · · , 𝒗𝜇

]
, (28)

where 𝒗1, · · · , 𝒗𝜇 are the 𝜇 columns of the unitary matrix 𝑽.

Any two columns of 𝑿2,𝑛𝑧,𝑘 are orthogonal, so 𝑿2 is also the

solution of G1, and its minimum number of columns is 𝜇.

The minimum NOP is equal to the chromatic number of the

graph corresponding to 𝑯̄. �

The steps to determine the minimum NOP from the equiva-

lent matrix 𝑯̄ = 𝑯H𝑭 are as follows:

Step 1: Let 𝑨̄ denote the sparse feature of the weight matrix

𝑨, and the element of 𝑨̄ is defined as

[
𝑨̄
]
𝑘,𝑚

=

{
1, 𝑎𝑘,𝑚 ≠ 0;
0, 𝑎𝑘,𝑚 = 0.

(29)

The sparse feature matrix 𝑮 with BSUS is given by

𝑮 = 𝑨̄ (U,B) . (30)

where U = {𝑘 |𝑢𝑘 = 1, 𝑘 ∈ K} denotes the indices of schedul-

ing users, and B = {𝑚 |𝑏𝑚 = 1, 𝑚 ∈ M} denotes the indices of

selected beams.

Step 2: The adjacency matrix 𝑮̄ can be established as

[
𝑮̄
]
𝑖, 𝑗

=

{
0, 𝑖 = 𝑗 or

[
𝑮̂
]
𝑖, 𝑗

= 0;
1, else,

(31)
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where 𝑮̂ = 𝑮H𝑮 is established according to 𝑮.

Step 3: The chromatic number of the graph generated by

the equivalent matrix 𝑯̄ equals the adjacent matrix 𝑮̄, and

solving the chromatic number of the graph is considered to be

an NP-hard problem. To determine the chromatic number of

the graph corresponding to the equivalent matrix 𝑯̄, we use the

relationship between maximum vertex degree and chromatic

number

X (
𝑮̄
) ≤ Δ

(
𝑮̄
) + 1, (32)

where X (
𝑮̄
)

is the chromatic number of 𝑮̄, and Δ
(
𝑮̄
)

denotes

the maximum vertex degree of 𝑮̄. The minimum NOP is set

as the upper bound of the chromatic number.

The second constraint (Eq. (20c)) can be expressed as

Δ
(
𝑮̄
) + 1 ≤ 𝑁. (33)

Although we use the maximum vertex degree to represent

the pilot constraint, representing the maximum vertex degree

of 𝑮̄ is complex and cannot be expressed as a simple linear

or quadratic inequality constraint. This complexity makes the

optimization problem difficult to solve. To address this issue,

we propose an I-BSUS scheme to find the minimum pilot. In

the proposed I-BSUS scheme, we iteratively schedule users

and select beams without increasing the orthogonal pilots.

Specifically, let A = M −B denote the remaining unselected

beams, where B contains the first 𝑙 − 1 selected beams. Let

C = K −U denote the remaining unscheduling users, where

U contains the first 𝑙 − 1 scheduling users.

In the 𝑙-th iteration, the adjacency matrix 𝑮̄𝑙 with the beams

in A and the users in C are calculated. Beams, users, and

beam-user pairs with the same maximum vertex degree as 𝑮̄𝑙−1
are denoted by D. The index of optimal user and beam is

selected as

{𝑘∗, 𝑚∗} = arg max
{𝑘′ ,𝑚′ }∈D

𝑀∑
𝑚=1

𝑏𝑚𝑎𝑘′ ,𝑚 +
𝐾∑
𝑘=1

𝑢𝑘𝑎𝑘,𝑚′ − 𝑎𝑘′ ,𝑚′ .

(34)

If D is an empty set, i.e., no beam, the user, and beam-user

pair have a non-adjacent relationship with the beams in B or

the users in U. The optimal beam and user will be selected as

{𝑘∗, 𝑚∗} = arg max
𝑘
′ ∈A,𝑚′ ∈C

𝑀∑
𝑚=1

𝑏𝑚𝑎𝑘′ ,𝑚 +
𝐾∑
𝑘=1

𝑢𝑘𝑎𝑘,𝑚′ − 𝑎𝑘′ ,𝑚′ .

(35)

The details of the I-BSUS scheme are shown in Algorithm 1.

IV. EFFECTIVE INSTANTANEOUS CSI ESTIMATION AND

PERFORMANCE WITH BASEBAND DIGITAL PRECODING

The EI-CSI 𝑯̄ = 𝑯H𝑭 at the BS is obtained by downlink

pilots and uplink feedback. As shown in Fig. 4, suppose the

Downlink 
Pilots

Uplink CSI 
Feedback

Downlink Data 
Transmission

FDD Mode

cT

pT fT dT

Fig. 4: Duration of a time slot in FDD mode.

Algorithm 1: The I-BSUS scheme

Input: 𝑨;𝑨̄;M;K.

Output: B;U.

1 Initialization B = ∅ and A = M − B.

2 Initialization U = ∅ and C = K −U.

3 while 𝑙 ≤ 𝑁𝑅𝐹 and NOP < 𝑁 do
4 Repeat
5 Establish the new B = B + 𝑚, 𝑚 ∈ A and

U = U + 𝑘, 𝑘 ∈ C.

6 Establish the sparse feature matrix 𝑮 as described

in Eq. (30).

7 Compute the adjacency matrix 𝑮̄ as described in

Eq. (31).

8 The beams, users, and beam-user pairs with the

same maximum vertex degree as 𝑮̄𝑙−1 are denoted

by D.

9 The index of optimal user and beam is selected as

{𝑘∗, 𝑚∗} = arg max
{𝑘′ ,𝑚′ }∈D

𝑀∑
𝑚=1

𝑏𝑚𝑎𝑘′ ,𝑚 (36)

+
𝐾∑
𝑘=1

𝑢𝑘𝑎𝑘,𝑚′ − 𝑎𝑘′ ,𝑚′ .

if D = ∅ then
10 The index of optimal user and beam is selected

as

{𝑘∗, 𝑚∗} = arg max
𝑘
′ ∈A,𝑚′ ∈C

𝑀∑
𝑚=1

𝑏𝑚𝑎𝑘′ ,𝑚 (37)

+
𝐾∑
𝑘=1

𝑢𝑘𝑎𝑘,𝑚′ − 𝑎𝑘′ ,𝑚′ .

11 end
12 end
13 Procedure End

coherence time 𝑇𝑐 = 𝑇𝑝 +𝑇 𝑓 +𝑇𝑑 , where 𝑇𝑝 , 𝑇 𝑓 , and 𝑇𝑑 are the

numbers of symbols occupied by downlink pilot training, uplink

feedback, and downlink data transmission, respectively. After

pre-beamforming, the EI-CSI 𝑯̄ is a sparse matrix. Estimating

𝑯̄ requires fewer pilots 𝑇𝑝 and lower uplink feedback 𝑇 𝑓 than

estimating 𝑯, which requires more symbols for downlink data

transmission, thereby improving the performance of NSE. This

paper provides pilot matrix design schemes according to the

different structures of 𝑯̄ under the one-ring local scattering

and multiple scattering clusters models.

A. Design of Pilot Matrix

Given the pilot matrix 𝑿, the received signal of user 𝑘 is

expressed as

𝒚H
𝑝,𝑘 = 𝒉H

𝑘 𝑭𝑿 + 𝒏H
𝑘 , (38)

where 𝒉𝑘 is the channel between user 𝑘 and the BS, and

𝒏𝑘 ∼ CN (
0, 𝜎2𝑰

)
is additive white Gaussian noise.
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1) Pilot Matrix of One-ring Local Scattering Model: Similar

to [27], if the center angle 𝜃𝑘 , 𝑘 ∈ K are sorted in an ascending

order, where K = {1, 2, · · · , 𝐾} is the indices of users, then

𝑯̄ has a banded structure. Therefore, the pilot matrix 𝑿 is

designed to have the same structure as in [27] to estimated the

EI-CSI 𝑯̄. To achieve good performance and for simplicity of

implementation, 𝑿 has the following circular formulation

𝑿 =
[
𝒙1, 𝒙2, · · · , 𝒙𝜇, 𝒙1, 𝒙2, · · · , 𝒙𝜇, · · ·

]H
, (39)

where 𝒙𝑖 , 𝑖 = 1, 2, · · · , 𝜇 are orthogonal to each other, and 𝜇
is NOP that depends on the sparse structure of 𝑯̄. We design

the NOP in Section (III) to avoid the loss of system spectrum

efficiency.

2) Pilot Matrix of Multiple Scattering Clusters Model:
In the multiple scattering clusters model, the distribution of

the non-zero values of the EI-CSI 𝑯̄ is irregular, imposing

difficulty in the design of the pilot matrix. In Section (III), we

present an I-BSUS scheme for obtaining the EI-CSI 𝑯̄. Based

on the structure of the resulting 𝑯̄, we propose a simple IPA

scheme for designing the pilot matrix 𝑿.

The pilot matrix comprises 𝜇 orthogonal pilot vectors and

is formulated as

𝑿 =
[
𝒙1, 𝒙2, · · · , 𝒙𝜇

]H
. (40)

The main idea of the IPA scheme is to iteratively assign pilots

to the indices of the elements of the 𝑘 (𝑘 ∈ K)-th row while

ensuring that the indices of non-zero elements in each row of

the EI-CSI 𝑯̄ are allocated to orthogonal pilots.

In the 𝑘-th iteration, we allocate pilots to the indices of non-

zero elements in the 𝑘-th row of 𝑯̄. The indices of non-zero

elements that need to be assigned pilots are contained in Ī𝑘 ,

Ī𝑘 = I𝑘 \ I𝑠𝑢𝑚, (41)

where I𝑠𝑢𝑚 is the set containing the indices that have assigned

pilots in the previous 𝑘 − 1 iterations, and I𝑘 contains the

indices of the non-zero elements in the 𝑘-th row of 𝑯̄.

Let F𝑖 be the indices of non-zero elements in the 𝑖-th column

of 𝑯̄ for 𝑖 ∈ I𝑘 . The pilots of the indices in I𝑟𝑒 can be used

for 𝑖, and I𝑟𝑒 is expressed as

I𝑟𝑒 = I𝑠𝑢𝑚 \
⋃
𝑘∈F𝑖

I𝑘 . (42)

If I𝑟𝑒 is not empty, we assign pilots to index 𝑖 using the pilots

of the indices in I𝑟𝑒. Otherwise, the new pilots are used. We

update I𝑠𝑢𝑚 and Ī𝑘 and recompute I𝑟𝑒 until all indices in Ī𝑘
are assigned pilots. The details of the IPA scheme are presented

in Algorithm 2.

B. Performance with Baseband Digital Precoding

Similar to [23], [27], the non-zero entries of the EI-CSI

𝑯̄ = 𝑯H𝑭 are assumed to be perfectly estimated and obtained.

The precoder 𝑾 only requires the knowledge of 𝑯̄, which is

Algorithm 2: Iterative pilot allocation (IPA)

Input: 𝑯H𝑭.

Output: 𝑿.

1 Initialize I𝑠𝑢𝑚 = ∅.

2 Generate I𝑘 from 𝑯H𝑭.

3 for 𝑘 = 1 : 𝐾 do
4 Repeat
5 Calculate Ī𝑘 as shown in Eq. (41).

6 for 𝑖 ∈ Ī𝑘 do
7 Repeat
8 Calculate I𝑟𝑒 as shown in Eq. (42).

9 if I𝑟𝑒 ≠ ∅ then
10 Assigned pilots to 𝑖 using the pilots of the

indices in I𝑟𝑒.
11 else
12 The new pilot is assigned to 𝑖.
13 end
14 Update I𝑠𝑢𝑚 and Ī𝑘 .

15 end
16 end
17 Procedure End

designed by the commonly used linear multi-user digital ZF

precoder as

𝑾 =
(
𝑯H𝑭

)†
𝚪

=
(
𝑯H𝑭

)H
((
𝑯H𝑭

) (
𝑯H𝑭

)H
)−1

𝚪

= 𝑭H𝑯
(
𝑯H𝑭𝑭H𝑯

)−1
𝚪,

(43)

where 𝚪 = 𝑑𝑖𝑎𝑔(𝛾1, 𝛾2, · · · , 𝛾𝐾 ) is a diagonal matrix used to

normalize each column in 𝑾.

Given the NOP 𝜇, the NSE of user 𝑘 is given by

𝑅̄𝑘 = (1 − 𝜇/𝑇𝑐) 𝑅𝑘 , (44)

where 𝑇𝑐 is the coherence time and 𝑅𝑘 = log2 (1 + SINR𝑘 ).
With the given beamforming matrix 𝑭 and 𝑾, SINR𝑘 is

expressed as

SINR𝑘 =

��𝒉H
𝑘 𝑭𝒘𝑘

��2 𝑃
𝐾∑

𝑖≠𝑘

��𝒉H
𝑘 𝑭𝒘𝑖

��2 𝑃
𝐾 + 𝜎2

, (45)

where 𝒘𝑘 is the 𝑘-th column of 𝑾.

The sum rate of the system is given by

𝑅𝑠𝑢𝑚 =

(
1 − 𝜇

𝑇𝑐

) 𝐾∑
𝑘=1

log2

(
1 +

��𝒉H
𝑘 𝑭𝒘𝑘

��2 𝑃
𝐾∑

𝑖≠𝑘

��𝒉H
𝑘 𝑭𝒘𝑖

��2 𝑃
𝐾 + 𝜎2

)
.

(46)

V. SIMULATIONS

This section evaluates the performance of the proposed MILP

and I-BSUS schemes on various simulations and compares

them with the active channel sparsification (ACS) and JSDM

schemes [22], [28]. In the following trials, the number of

antennas in the BS is 𝑀 = 128. The central AODs of each
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user are assumed to be uniformly distributed in the interval[− 𝜋3 , 𝜋3 ] . Under the assumption that 𝑟 � 𝑑𝑘 , the AS is set to

Δ𝐻,𝑘 = Δ𝐻 = 5◦. Finally, the number of RF chains is set to

𝑁𝑅𝐹 = 64.

A. Simulation Results of One-ring Local Scattering Clusters
Model

Fig. 5 depicts the NSE of the proposed MILP, ACS, and

JSDM schemes at different SNRs. The number of users is

set to 20 and 40, the restricted number of pilots is 𝑁 = 15,

and 𝑇𝑐 used in Eq. (44) is set to 100 symbols [27]. Fig. 5

highlights that the proposed MILP scheme consistently has a

higher NSE than ACS and JSDM, regardless of the number of

users. This allows the MILP to reduce pilot length and inter-

user interference through its efficient user scheduling scheme.

As the number of users increases, the performance gains of the

proposed MILP over the ACS become more pronounced, and

the NSE of the JSDM scheme is better than ACS at high SNR.

This is because the limited number of RF chains hinders the

growth of NSE, and the proposed MILP scheme has a good

BSUS strategy.
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Fig. 5: Comparison of the NSE under different SNRs.

Fig. 6 depicts the NOP of the proposed MILP, ACS, and

JSDM schemes under a varying pilot constraint 𝑁 . The SNR is

set to 20 dB. As the pilot constraint 𝑁 increases, the number of

NOP tends to stabilize for all three schemes: MILP, ACS, and

JSDM. Notably, the ACS scheme consistently achieves lower

NOP than the MILP scheme, particularly when the number

of users 𝐾 is large. Meanwhile, despite having more pilots

than the ACS scheme, the MILP scheme exhibits higher NSE

values when the NOP stabilizes. Furthermore, the MILP scheme

exhibits nearly identical NOP values across different numbers

of users. In contrast, JSDM’s NOP increases with the number

of beams as the number of users increases, as it does not

involve user scheduling.

Fig. 7 illustrates the relationship between NSE versus the

number of users 𝐾 , and the SNR is set to 20 dB. 𝑇𝑐 is set to

100 symbols. The proposed MILP scheme generally achieves
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Fig. 6: Comparison of the NOP under different 𝑁 , SNR=20 dB.

higher NSE than the ACS scheme, especially for a large number

of users 𝐾. However, the NSE of all three schemes initially

increases and decreases as 𝐾 increases. This is due to the

growing user interference, the energy required to transmit

signals, and the increasing number of pilots that decrease

the NSE. The ACS scheme outperforms JSDM due to its

user scheduling scheme, which reduces inter-user interference.

Moreover, the limited number of RF chains at the BS hinders

the improvement of ESE, especially as the number of users

increases, and this effect is particularly significant in the ACS

scheme.
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Fig. 7: Comparison of the NSE under different 𝐾 .

B. Simulation Results of Multiple Scattering Clusters Model

Fig. 8 presents the NSE of the proposed I-BSUS and ACS

schemes under varying SNR, with the number of users set to

50. The results infer that the proposed I-BSUS scheme exhibits

a higher NSE than the ACS scheme, particularly when the
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number of users is large. This is because the I-BSUS scheme

uses fewer orthogonal pilots than the ACS scheme. In contrast,

the limited number of RF chains impairs the NSE of the ACS

scheme.
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Fig. 8: Comparison of the NSE under different SNRs.

Fig. 9 illustrates the NOP of the proposed I-BSUS and ACS

schemes under limited pilot constraint 𝑁 , with the number of

users set to 20 and 40. In Fig. 9, the NOP of the proposed

I-BSUS and ACS schemes increases with the limited pilot

constraint 𝑁 and stabilizes at around 𝑁 > 25. The NOP of the

proposed I-BSUS scheme is consistently lower than that of

the ACS scheme, regardless of the number of users 𝐾 . Due to

the user scheduling scheme, the NOP of the proposed I-BSUS

scheme remains almost the same when 𝐾 = 20 and 𝐾 = 40,

with the NOP of 𝐾 = 40 being slightly smaller than that of

𝐾 = 20.
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Fig. 9: Comparison of the NOP under different 𝑁 .

Fig. 10 depicts the NSE of both schemes as a function of the

number of users 𝐾 , with the SNR set to 10 dB. The proposed

I-BSUS scheme exhibits a higher NSE than the ACS scheme.

As the number of users increases, the NSE of the proposed

I-BSUS scheme remains relatively stable. Conversely, the NSE

of the ACS scheme decreases as the number of users increases.

The proposed I-BSUS scheme, with its smaller number of

orthogonal pilots and superior user scheduling scheme, achieves

the highest NSE.
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Fig. 10: Comparison of the NSE under different 𝐾 .

VI. CONCLUSION

A TSB scheme is proposed to reduce the overhead of pilots

and feedback for FDD massive MIMO systems. Additionally,

two BSUS schemes that rely only on S-CSI are proposed that

reduce pilots and feedback overhead by exploiting channel

sparsity. Accurately representing the pilot constraint in the

MILP problem enables the optimal BSUS scheme to be

obtained. Indeed, the I-BSUS scheme obtains minimum pilots

while ensuring system performance. Together, the optimal

BSUS scheme and minimum pilots provide a better NSE

improvement. The simulation results confirm that the proposed

MILP and I-BSUS schemes outperform the ACS scheme

regarding NSE. Future work will investigate the TSB scheme

with user scheduling in three-dimensional massive MIMO

systems.

APPENDIX

PROOF OF THE LINEARIZATION OF QCQP

Necessity: If 𝒙∗ is the optimal solution of P3,
(
𝒙∗, 𝒛∗, 𝒔∗, 𝒕∗𝑘

)
is also the optimal solution of P4.

Given 𝒙 ∈ {0, 1}𝐾+𝑀 and 𝐴 = ‖𝑸‖∞, it follows that 𝑸𝒙 +
𝐴𝒓 ≥ 0. Therefore, there exist 𝒛 ≥ 0, 𝒔 ≥ 0 that satisfy the

following equations:

𝑸𝒙 − 𝒛 − 𝒔 + 𝐴𝒓 = 0, (47)

𝒙T𝒛 = 0. (48)

𝒛∗ and 𝒔∗ can be selected for 𝒙∗ to satisfy Eq. (47) and Eq. (48)

while minimizing 𝒓T𝒔∗ in 𝒓T𝒔.
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It is worth noting that 𝒙T𝒛 = 0 is a quadratic constraint.

From Eq. (47), we have

𝒛 = 𝑸𝒙 − 𝒔 + 𝐴𝒓

≤ 𝑸𝒙 + 𝐴𝒓 ≤ 2𝐴𝒓.
(49)

This provides an upper bound for 𝒛. From Eq. (48), it follows

that when 𝒙𝑖 = 0, 𝒛𝑖 ≤ 2𝐴 = 2𝐴 (𝒓 − 𝒙)𝑖 , and when 𝒙𝑖 = 1,

𝒛𝑖 = 0 = 2𝐴 (𝒓 − 𝒙)𝑖 . Therefore, 𝒛 ≤ 2𝐴 (𝒓 − 𝒙), and we can

use the linear constraint 𝒛 ≤ 2𝐴 (𝒓 − 𝒙) instead of 𝒙T𝒛 = 0.

By substituting 𝒙∗ into Eq. (47) and multiplying both sides

by (𝒙∗)T, we obtain

(𝒙∗)T 𝑸𝒙∗ − (𝒙∗)T 𝒛∗ − (𝒙∗)T 𝒔∗ + 𝐴 (𝒙∗)T 𝒓 = 0. (50)

Since 0 ≤ 𝒛 ≤ 2𝐴 (𝒓 − 𝒙), there must be 𝑧𝑖 = 0 when 𝑥𝑖 = 1,

and when 𝑥𝑖 = 0, we have 𝑧𝑖 ≤ 2𝐴, which implies 𝒙T𝒛 = 0.

Eq. (50) can be reformulated as

(𝒙∗)T 𝑸𝒙∗ = (𝒙∗)T 𝒔∗ − 𝐴𝒓T𝒙∗

(𝑏)
= 𝒓T𝒔∗ − 𝐴𝒓T𝒙∗,

(51)

where (𝑏) can be proved by Lemma 1. Thus, (𝒙∗, 𝒛∗, 𝒔∗) is

the optimal solution of problem P4.

Lemma 1. For any 𝑖, if 𝑥∗𝑖 = 0, there must be 𝑠∗𝑖 = 0.

Proof. Suppose there exists 𝑖0 such that 𝑥∗𝑖0 = 0, 𝑠∗𝑖0 > 0, and

𝒓T𝒔∗ is the smallest. When 𝑗 = 𝑖0, we record 𝑧 𝑗 = 𝑧∗𝑖0 + 𝑠∗𝑖0 , 𝑠 𝑗 =
0. When 𝑗 ≠ 𝑖0, we record 𝑧 𝑗 = 𝑧∗𝑖0 and 𝑠 𝑗 = 𝑠∗𝑗 .

Since 𝒛 + 𝒔 = 𝒛∗ + 𝒔∗, it satisfies Eq. (47) and Eq. (48), but

𝒓T𝒔 < 𝒓T𝒔∗, which contradicts the assumption that 𝒓T𝒔∗ is the

smallest. Therefore, when 𝑥∗𝑖 = 0, there must be 𝑠∗𝑖 = 0. �

If 𝒙∗ is the optimal solution of problem P3, we define

𝒕∗𝑘 ∈ R𝐾+𝑀 such that for 1 ≤ 𝑖 ≤ (𝐾 + 𝑀),

𝒕∗𝑘 =

{(
𝑸̄𝑘𝒙

)
𝑖 , 𝑥∗𝑖 = 1;

0, 𝑥∗𝑖 = 0.
(52)

Since 𝑸̄𝑘𝒙 is non-negative, we have 𝑸̄𝑘𝒙− 𝒕∗𝑘 ≤ 0 and 𝒕∗𝑘 ≥ 𝑸̄𝑘 .

Using 𝒓T 𝒕∗𝑘 = (𝒙∗)T 𝒕∗𝑘 , we obtain

(𝒙∗)T 𝑸̄𝑘𝒙
∗ =

∑
𝑥∗𝑖 =1

(
𝑸̄𝑘𝒙

∗)
𝑖

=
∑
𝑥∗𝑖 =1

(
𝒕∗𝑘
)
𝑖

= (𝒙∗)T 𝒕∗𝑘
= 𝒓T 𝒕∗𝑘 ≤ 𝑁.

(53)

From the above proof, we can see that there exists a solution(
𝒙∗, 𝒛∗, 𝒔∗, 𝒕∗𝑘

)
that satisfies the constraint conditions of problem

P4. Therefore,
(
𝒙∗, 𝒛∗, 𝒔∗, 𝒕∗𝑘

)
is the optimal solution of P4, and

the optimal values of P3 and P4 are the same.

Sufficiency: If
(
𝒙∗, 𝒛∗, 𝒔∗, 𝒕∗𝑘

)
is the optimal solution of

problem P4, then (𝒙∗) must be the optimal solution of problem

P3.

Suppose 𝒙∗ is not the optimal solution of problem P3, and

𝒙̄ is the optimal solution of problem P3. Then, we have

𝒙̄T𝑸𝒙̄ < (𝒙∗)T 𝑸𝒙∗. (54)

At the same time, using the method of finding the optimal

solution of problem P3 in the necessity proof, we obtain that

𝒛, 𝒔, 𝒕𝑘 satisfy the constraints, such that 𝒓T𝒔 − 𝐴𝒓T𝒙̄ is the

smallest. Thus, we have

𝒙̄T𝑸𝒙̄ = 𝒓T𝒔 − 𝐴𝒓T𝒙̄. (55)

However, since
(
𝒙∗, 𝒛∗, 𝒔∗, 𝒕∗𝑘

)
is the optimal solution of the

problem P4, it can be seen from the necessity proof that

(𝒙∗)T 𝑸𝒙∗ = 𝒓T𝒔∗ − 𝐴𝒓T𝒙∗. (56)

From 𝒙̄T𝑸𝒙̄ < (𝒙∗)T 𝑸𝒙∗, we know that 𝒓T𝒔 − 𝐴𝒓T𝒙̄ <
𝒓T𝒔∗ − 𝐴𝒓T𝒙∗, which contradicts the fact that

(
𝒙∗, 𝒛∗, 𝒔∗, 𝒕∗𝑘

)
is

the optimal solution of problem P4. Therefore, 𝒙∗ must be the

optimal solution to problem P3, and the optimal values of P3
and P4 are the same.

REFERENCES

[1] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. M. Montiel, and
J. D. Tardós, “ORB-SLAM3: An accurate open-source library for visual,
visual–inertial, and multimap SLAM,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 1874–1890, 2021.

[2] A. Ranjha and G. Kaddoum, “URLLC facilitated by mobile UAV relay
and RIS: A joint design of passive beamforming, blocklength, and UAV
positioning,” IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4618–
4627, 2021.

[3] J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng, and
A. Petropulu, “An overview of signal processing techniques for joint
communication and radar sensing,” IEEE Journal of Selected Topics in
Signal Processing, vol. 15, no. 6, pp. 1295–1315, 2021.

[4] B. Cao, J. Zhang, X. Liu, Z. Sun, W. Cao, R. M. Nowak, and Z. Lv,
“Edge–cloud resource scheduling in space–air–ground-integrated networks
for internet of vehicles,” IEEE Internet of Things Journal, vol. 9, no. 8,
pp. 5765–5772, 2022.

[5] Z. Abdullah, G. Chen, S. Lambotharan, and J. A. Chambers, “Optimiza-
tion of intelligent reflecting surface assisted full-duplex relay networks,”
IEEE Wireless Communications Letters, vol. 10, no. 2, pp. 363–367,
2021.

[6] L. Wang, G. Liu, J. Xue, and K.-K. Wong, “Channel prediction using
ordinary differential equations for mimo systems,” IEEE Transactions
on Vehicular Technology, vol. 72, no. 2, pp. 2111–2119, 2023.

[7] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive
MIMO for next generation wireless systems,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 186–195, 2014.

[8] E. Björnson, E. G. Larsson, and T. L. Marzetta, “Massive MIMO:
ten myths and one critical question,” IEEE Communications Magazine,
vol. 54, no. 2, pp. 114–123, 2016.

[9] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “The multicell multiuser
MIMO uplink with very large antenna arrays and a finite-dimensional
channel,” IEEE Transactions on Communications, vol. 61, no. 6, pp.
2350–2361, 2013.

[10] A. Adhikary, A. Ashikhmin, and T. L. Marzetta, “Uplink interference
reduction in large-scale antenna systems,” IEEE Transactions on Com-
munications, vol. 65, no. 5, pp. 2194–2206, 2017.

[11] D. Verenzuela, E. Björnson, X. Wang, M. Arnold, and S. ten Brink,
“Massive-MIMO iterative channel estimation and decoding (MICED) in
the uplink,” IEEE Transactions on Communications, vol. 68, no. 2, pp.
854–870, 2020.

[12] Z. Jiang, A. F. Molisch, G. Caire, and Z. Niu, “Achievable rates of
FDD massive MIMO systems with spatial channel correlation,” IEEE
Transactions on Wireless Communications, vol. 14, no. 5, pp. 2868–2882,
2015.

[13] J. Fang, X. Li, H. Li, and F. Gao, “Low-rank covariance-assisted downlink
training and channel estimation for FDD massive MIMO systems,” IEEE
Transactions on Wireless Communications, vol. 16, no. 3, pp. 1935–1947,
2017.

[14] Y. Gu and Y. D. Zhang, “Information-theoretic pilot design for downlink
channel estimation in FDD massive MIMO systems,” IEEE Transactions
on Signal Processing, vol. 67, no. 9, pp. 2334–2346, 2019.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3311044

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 14:42:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, JUNE 2023 12

[15] X. Rao and V. K. N. Lau, “Distributed compressive CSIT estimation
and feedback for FDD multi-user massive MIMO systems,” IEEE
Transactions on Signal Processing, vol. 62, no. 12, pp. 3261–3271,
2014.

[16] J. Lee, G.-T. Gil, and Y. H. Lee, “Channel estimation via orthogonal
matching pursuit for hybrid MIMO systems in millimeter wave commu-
nications,” IEEE Transactions on Communications, vol. 64, no. 6, pp.
2370–2386, 2016.

[17] Y. Han, J. Lee, and D. J. Love, “Compressed sensing-aided downlink
channel training for FDD massive MIMO systems,” IEEE Transactions
on Communications, vol. 65, no. 7, pp. 2852–2862, 2017.

[18] V. K. N. Lau, S. Cai, and A. Liu, “Closed-loop compressive CSIT
estimation in FDD massive MIMO systems with 1 bit feedback,” IEEE
Transactions on Signal Processing, vol. 64, no. 8, pp. 2146–2155, 2016.

[19] J. Dai, A. Liu, and V. K. N. Lau, “FDD massive MIMO channel
estimation with arbitrary 2D-array geometry,” IEEE Transactions on
Signal Processing, vol. 66, no. 10, pp. 2584–2599, 2018.

[20] W. Ma, C. Qi, Z. Zhang, and J. Cheng, “Sparse channel estimation
and hybrid precoding using deep learning for millimeter wave massive
MIMO,” IEEE Transactions on Communications, vol. 68, no. 5, pp.
2838–2849, 2020.

[21] X. Zheng and V. Lau, “Federated online deep learning for CSIT and
CSIR estimation of FDD multi-user massive MIMO systems,” IEEE
Transactions on Signal Processing, vol. 70, pp. 2253–2266, 2022.

[22] A. Adhikary, J. Nam, J.-Y. Ahn, and G. Caire, “Joint spatial division
and multiplexing—the large-scale array regime,” IEEE Transactions on
Information Theory, vol. 59, no. 10, pp. 6441–6463, 2013.

[23] J. Nam, A. Adhikary, J.-Y. Ahn, and G. Caire, “Joint spatial division and
multiplexing: Opportunistic beamforming, user grouping and simplified
downlink scheduling,” IEEE Journal of Selected Topics in Signal
Processing, vol. 8, no. 5, pp. 876–890, 2014.

[24] X. Sun, X. Gao, G. Y. Li, and W. Han, “Agglomerative user clustering
and downlink group scheduling for FDD massive MIMO systems,” in
2017 IEEE International Conference on Communications (ICC), 2017,
pp. 1–6.

[25] D. Kim, G. Lee, and Y. Sung, “Two-stage beamformer design for massive
MIMO downlink by trace quotient formulation,” IEEE Transactions on
Communications, vol. 63, no. 6, pp. 2200–2211, 2015.

[26] Y. Jeon, C. Song, S.-R. Lee, S. Maeng, J. Jung, and I. Lee, “New
beamforming designs for joint spatial division and multiplexing in
large-scale MISO multi-user systems,” IEEE Transactions on Wireless
Communications, vol. 16, no. 5, pp. 3029–3041, 2017.

[27] Y. Song, C. Liu, Y. Liu, N. Cheng, Y. Huang, and X. Shen, “Joint spatial
division and multiplexing in massive MIMO: A neighbor-based approach,”
IEEE Transactions on Wireless Communications, vol. 19, no. 11, pp.
7392–7406, 2020.

[28] M. Barzegar Khalilsarai, S. Haghighatshoar, X. Yi, and G. Caire, “FDD
massive MIMO via UL/DL channel covariance extrapolation and active
channel sparsification,” IEEE Transactions on Wireless Communications,
vol. 18, no. 1, pp. 121–135, 2019.

[29] Z. Zou, S. Zhao, G. Huang, and D. Tang, “Novel design of user scheduling
and analog beam selection in downlink millimeter-wave communications,”
IEEE Internet of Things Journal, vol. 9, no. 6, pp. 4168–4178, 2022.

[30] S. Zou, J. Wu, H. Yu, W. Wang, L. Huang, W. Ni, and
Y. Liu, “Efficiency-optimized 6G: A virtual network resource
orchestration strategy by enhanced particle swarm optimization,”
Digital Communications and Networks, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352864823001141

Tianbao Gao received the B.S. degree in Electronic
Information Science and Technology from Xi’an
Technological University, China, in 2013. He is
currently working toward the Ph.D. degree with the
Nanjing University of Posts and Telecommunications
(NUPT), Nanjing, China. His research interests
include massive MIMO systems.

Chen Liu (Member, IEEE) received the B.E. degree
in Electrical and Information Engineering from the
Nanjing Institute of Technology (Southeast Univer-
sity), China, in 1985, the M.S. degree in circuits
and systems from Anhui University, China, in 1988,
and the Ph.D. degree in signal and information
processing from Southeast University, China, in 2005.
In 1988, he joined the Nanjing University of Posts
and Telecommunications (NUPT), where he has been
a Professor since 2002. His current research interest
includes massive MIMO systems.

Yunchao Song (Member, IEEE) received the B.E.
degree in Electronic Science and Technology and
the Ph.D. degree in Circuits and Systems from the
Nanjing University of Posts and Telecommunications
(NUPT), Nanjing, China, in 2010 and 2016, respec-
tively. Since 2017, he has been an Instructor with the
College of Electronic and Optical Engineering, NUPT.
He is currently a Visiting Scholar with the BBCR
Lab, Department of Electronics and Communication
Engineering (ECE), University of Waterloo, Canada.
His research interest includes massive MIMO sys-

tems.

Zhisheng Yin (Member, IEEE) received the Ph.D.
degree from the School of Electronics and Infor-
mation Engineering, Harbin Institute of Technology,
Harbin, China, in 2020. From September 2018 to
September 2019, he visited with the BBCR Group,
Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, ON, Canada. He
is currently an Assistant Professor with State Key
Lab of ISN, and with School of Telecommunications
Engineering, Xidian University, Xi’an, China. His re-
search interests include SAGINs, cybertwin, wireless

communications, and physical layer security.

Huibin Liang received the B.S. degree in Opto-
electronic Information Science and Engineering from
Nanjing University of Posts and Telecommunications,
China, in 2021. He is currently working toward the
Ph.D. degree with the Nanjing University of Posts and
Telecommunications, Nanjing, China. His research
interests include massive MIMO systems.

Nan Cheng (Member, IEEE) received the B.E. and
M.S. degrees from the Department of Electronics and
Information Engineering, Tongji University, Shang
hai, China, in 2009 and 2012, respectively, and
the Ph.D. degree from the Department of Electrical
and Computer Engineering, University of Waterloo,
Waterloo, ON, Canada, in 2016. From 2017 to 2018,
he was a Post-Doctoral Fellow with the Department
of Electrical and Computer Engineering, University
of Toronto, Toronto, ON. He is currently a Professor
with State Key Lab of ISN, and with School of

Telecommunications Engineering, Xidian University, Xi’an, China. His current
research interests include space-air-ground integrated system, Big Data in
vehicular networks, and application of AI for vehicular networks.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3311044

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 13,2023 at 14:42:28 UTC from IEEE Xplore.  Restrictions apply. 


