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Abstract
This article presents a digital twin (DT)-en-

hanced reinforcement learning (RL) framework 
aimed at optimizing performance and reliability 
in network resource management, since the tradi-
tional RL methods face several unified challenges 
when applied to physical networks, including 
limited exploration efficiency, slow convergence, 
poor long-term performance, and safety concerns 
during the exploration phase. To deal with the 
above challenges, a comprehensive DT-based 
framework is proposed to enhance the con-
vergence speed and performance for unified 
RL-based resource management. The proposed 
framework provides safe action exploration, 
more accurate estimates of long-term returns, 
faster training convergence, higher convergence 
performance, and real-time adaptation to vary-
ing network conditions. Then, two case studies 
on ultra-reliable and low-latency communication 
(URLLC) services and multiple unmanned aerial 
vehicles (UAV) network are presented, demon-
strating improvements of the proposed framework 
in performance, convergence speed, and training 
cost reduction both on traditional RL and neural 
network based Deep RL (DRL). Finally, the arti-
cle identifies and explores some of the research 
challenges and open issues in this rapidly evolving 
field.

Introduction
In the era of 6G, as the communication networks 
grow ever more dynamic and complicated, tradi-
tional network management framework often fails 
to ensure reliability, latency, and resource optimi-
zation simultaneously, intensifying the demand 
for an innovative framework that can accom-
modate dynamic resource allocation based on 
real-time needs [1]. Though the transformative 
advantages of efficient network resource manage-
ment are evident, complexities abound, and the 
variegated nature of network environments signifi-
cantly stymie the attempt to model these systems 
accurately for traditional optimization methods. 
Moreover, the dynamic and complex features of 
networks make it necessary for network resource 

management to focus on more challenging long-
term dynamic performance optimization rather 
than limiting itself to optimizing static network 
performance, like the long-term average latency 
and throughput, raising the need for predictive 
resource allocation mechanisms that consider 
future states. For most network resource manage-
ment, like data transmission rate optimization and 
access point selection, the core challenge centers 
on developing policies that efficiently optimize 
network performance in different scenarios. How-
ever prescriptive, rule-based policies often grapple 
with adaptability limitations, making it challenging 
to handle unpredictable events or actions from 
other network entities [2].

Therefore, reinforcement learning (RL) algo-
rithms, especially deep reinforcement learning 
(DRL) algorithms, with temporal optimization 
capabilities and impressive feature extraction 
capabilities in complex scenarios, have demon-
strated significant success in optimizing 
communication network timing due to their 
temporal optimization and feature extraction 
capabilities in complex scenarios [3]. However, 
the development of 6G networks presents sev-
eral challenges for traditional RL algorithms: (1) 
slow convergence and poor global performance 
due to the increased action space dimension 
from expanded network resource allocations [4]; 
(2) difficulty in using a single neural network for 
resource management across all network nodes 
[5]; (3) complexity in network spatiotemporal 
features, leading RL agents to estimate long-term 
rewards based only on the current environment 
state [6]; and (4) limited sensor information 
for RL agents due to the increased number of 
network entities, turning the classical Markov 
Decision Process (MDP) into a more difficult par-
tially observable MDP (POMDP) [7]. Fortunately, 
as a rapidly developing and considered crucial 
technology for 6G networks, digital twin (DT) 
offers a promising solution to these challenges 
[8]. DT can accurately replicate physical space 
properties in digital space, allowing for testing 
and analysis of different behaviors’ impacts with-
out altering the physical environment [9], This 
capability improves the exploration efficiency, 
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resulting in better convergence performance, 
which is impractical in physical space interac-
tions, since any interactions in physical space will 
definitely change the environment. Meanwhile, 
DT’s predictive power can also assess the long-
term impact of current behaviors, enhancing 
long-term optimization performance. Addition-
ally, DT’s environmental perception ability can 
share global information with the physical agent, 
overcoming poor optimization performance 
caused by POMDP. Therefore, a DT-enhanced 
RL framework is proposed in this article and the 
main contributions of this article are as follows:
1.	 A DT-enhanced RL framework is proposed 

in this article, which leverages DT’s ability 
to analyze physical space characteristics in 
digital space, we can accumulate a large 
amount of high-quality training data in 
the digital domain, thereby enhancing RL 
performance. Since DT assistance is used 
only during the training phase, this frame-
work can integrate with almost all existing 
RL-based network management schemes. 
The physical RL agent continues to interact 
with the environment traditionally but ben-
efits from rapidly accumulating high-quality 
data, improving training speed and conver-
gence performance.

2.	 The concept of digital space in DT is 
expanded in this article by introducing dig-
ital domains, where each digital domain is 
a twin of the physical space and physical 
agent, thus a specific physical entity can 
have multiple twins in the digital space. The 
twins in the different domains can inde-
pendently or cooperatively test the impact 
of different actions on the physical environ-
ment, thus enabling a rapid accumulation 
of data.

3.	 Case studies demonstrate that the proposed 
DT-enhanced RL framework significantly 
improves the performance of both tradition-
al RL algorithms and DRL algorithms based 
on neural networks (NNs).

DT-Enhanced RL in Networks Resource 
Management

DT-Enhanced RL Framework
To fully utilize the capabilities of DTs and improve 
RL training performance and speed, we propose a 
DT-enhanced RL framework for resource manage-
ment, as shown in Fig. 1. It consists of four main 
components: RL agents, physical space, digital 
space, and data storage space.
•	 Physical Space. The physical space encom-

passes all entities involved in communi-
cation networks, including users, roads, 
infrastructure, environmental factors, and 
sensors for collecting network entity and 
environmental information.

•	 RL Agent. Reinforcement Learning (RL) 
agents observe the current network state 
and make decisions to optimize perfor-
mance. These agents can act as global net-
work controllers, allocating resources such 
as bandwidth, transmission power, and serv-
er computing resources, or designing trajec-
tories for unmanned aerial vehicles (UAVs). 
Additionally, agents can function as network 
nodes, including users or edge nodes, deter-
mining their own actions to cooperatively 
optimize performance, a concept known as 
multi-agent RL (MARL). RL agents handle a 
wide variety of tasks for users in the physical 
space. Central control RL agents manage 
large-scale network access, trajectory con-
trol of UAV cells, and resource allocation 
for user-to-base-station communications. In 
contrast, distributed RL agents manage user 
maneuvering, device-to-device communica-
tions, and computing task offloading among 

FIGURE 1. The DT-enhanced RL framework involves the physical agent interacting with the environment as in traditional RL, with DT 
serving only as a training assistant, except the physical agent cannot access global information, the digital space provides it. As the 
physical agent interacts with the environment, the twin agent in the digital space also interacts with its digital environment. Twin 
agents in each digital domain can independently or collaboratively explore the environment, generating more and higher-quality 
training data for the physical agent. When the physical agent updates its parameters, the twin agent mirrors these updates.

Reinforcement Learning (RL) agents observe the current network state and make decisions to optimize 
performance.
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users and edge servers. Given the diverse 
features and requirements of various RL 
tasks, and the high cost and potential dan-
ger of training RL in the physical space, a 
more efficient, cost-effective, and safe RL 
training method is necessary.

•	 Digital Space. The digital space uses the 
information collected from the physical 
space to twin all the features in the physical 
space that will impact the performance of 
the network in the DT server. Remarkably, 
different from traditional DT frameworks, 
the proposed framework extends the digital 
space to include multiple digital domains. 
Each digital domain acts as a twin of the 
physical space and the physical agent, mean-
ing a single entity in the physical space can 
correspond to multiple twins, each situated 
in a different digital domain. Among these 
digital domains, one serves as an identical 
digital domain, which mirrors the physical 
space exactly and is used for monitoring and 
sharing global information of physical space. 
Other digital domains, referred to as differ-
ent digital domains, only synchronize with 
the physical space at specific moments. At 
other times, these domains test the impact 
of various actions on the physical space, 
accumulating data for training the physical 
agent. Thus, their behavior can differ from 
that of the physical space. These different 
digital domains can operate independently 
or be coordinated by a central processing 
unit in the digital space to enhance the effi-
ciency of testing the impact of differentiated 
actions on the physical space.

•	 Storage Space. The storage space is the 
main difference between the proposed 
framework and traditional DT systems. The 
data storage space is used to store the tran-
sition data obtained from the interaction 
between the agent and the environment 
in different digital domains. Since different 
digital domains can be used to model the 
impact of different policies on the environ-
ment and the different performance of the 
same policy under specific conditions, the 
network decision maker can on-demand 
extract training data from different data 
stores to optimize the performance of the 
agent according to the characteristics of the 
current task that the agent is carrying out.
As is shown in Fig. 1, in this framework, the 

agent in the physical space interacts with the 
environment similarly to existing RL methods, 
where the DT only serves as an efficient training 
assistant, except when the physical agent can-
not obtain global information, the digital space 
will share global information with it. Therefore, 
the proposed framework can be directly used to 
improve RL training performance without chang-
ing the physical agent interaction logic. Whenever 
the physical agent interacts with the environment, 
the twin agent in the digital space also interacts 
with its digital environment. Depending on the 
training assistant strategy, the twin agent can 
either perform different interactions to accumu-
late more samples or use DT’s predictive power 
to obtain more accurate long-term reward sam-
ples, which are then stored in the replay buffer for 

training the physical agent. The use of DT allows 
twin agents to interact with multiple actions in 
the current environment state, effectively expand-
ing the number of samples, improving sampling 
uniformity, and aligning training samples with 
the environmental data distribution. By leverag-
ing DT’s predictive power for accurate long-term 
rewards, the estimation of long-term rewards 
by physical agents is improved, enhancing train-
ing effectiveness. Whenever the physical agent 
updates its parameters through training, the twin 
agent copies these updated parameters to ensure 
synchronization. The twin agents in each digi-
tal domain can independently or collaboratively 
explore various dimensions of the environment, 
thereby generating more and higher-quality data 
for training physical agents.

Benefits of DT-Enhanced RL
To train an RL agent to achieve high-performance 
resource management, there are four main chal-
lenges: low exploration efficiency, reward sparsity, 
local optimal policy, and poor long-term perfor-
mance. In this subsection, the benefits of the 
proposed DT-enhanced RL framework towards 
addressing these challenges are analyzed in detail.
•	 Simultaneous Trials on Different Actions. 

The efficacy of RL hinges largely upon the 
accumulation of vast quantities of data that 
enable it to discern the impact of each 
action within the action space. However, 
in physical network resource management 
an agent can only explore one action at a 
time, resulting in low exploration efficiency. 
With the proposed DT-enhanced RL frame-
work, given a state, multiple actions can be 
conducted across multiple digital domains 
simultaneously and independently, thereby 
accelerating the aggregation of training data 
for the RL training. Evidently, this method 
not only serves to expedite the pace of RL 
training but also advances the decision-mak-
ing performance of RL through the possi-
bility of unearthing superior strategies. For 
instance, for URLLC data transmission where 
high reliability is a prime imperative, an anal-
ysis (i.e., simultaneous action trials) of trans-
mission reliability and delay under varying 
network resource allocation schemes in the 
digital domain can thus improve RL train-
ing efficiency and decision-making perfor-
mance, and forestalling potential network 
performance slumping arising from data 
transmission glitches occasioned by random 
exploration within the physical space.

•	 Simultaneous Training on Differential 
Twins. The diversity of scenarios and task 
types of networks implies that attaining opti-
mal performance on all tasks using specific 
NN architectures and RL training methods 
is a futile pursuit. As such, different RL train-
ing methodologies, including but not lim-
ited to deep Q network (DQN) and deep 
deterministic policy gradient (DDPG), can 
be deployed to train agents with varying NN 
architectures such as convolutional neural 
networks (CNN), and recurrent neural net-
works (RNN) across a multiplicity of digi-
tal domains [10]. For specific tasks, users 
can either adopt the best-performing agent 
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directly for decision-making purposes or 
draw from a panoply of NN parameters 
obtained using different training methods 
under disparate NN architectures and saved 
to storage space. Alternatively, they can 
share all the policies gleaned by every agent 
with a new agent using a combination of 
knowledge distillation or other methods. 
This capability enables users or network 
managers to select agents on demand predi-
cated on the characteristics of the prevailing 
scenario and the nature of the business they 
need to handle, conferring unprecedented 
flexibility and adaptability to networks.

•	 Training Improvement With Prediction. 
In networks with high mobility or dynam-
ic, optimizing the long-term benefits is 
of great significance since a nearsighted 
action could bring short-term benefits but 
possibly long-term disadvantages such as 
longer travel times or even crashes. n-step 
learning in the physical space is proposed 
to update the parameters of the agent by 
accumulating n rewards as an estimate 
of the long-term rewards after the agent 
performs n actions, thus obtaining a more 
accurate time-difference (TD) error of the 
long-term rewards [11]. However, it is 
essential to understand that n-step learn-
ing can only obtain the long-term gain of 
a particular trajectory and takes it direct-
ly as the TD error. However, the true TD 
error is the average of the long-term gains 
of all possible trajectories. Therefore, n-step 
learning leads to an overestimation of the 
rewards, as highlighted in [12]. Fortunately, 
with the proposed DT-enhanced method, 
the agent can predict the effect of different 
actions on the state at future times in dif-
ferent digital domains. By utilizing the aver-
age long-term gain of different trajectories 
to estimate a more accurate TD error, the 
update direction of agent parameters can 
be significantly improved.

•	 Observation Capability Enhancement. At 
the crux of RL’s decision-making lies its abil-
ity to appraise the environment, with the 
performance of its decisions being directly 
proportional to the volume of information 
that it gleans and that has a bearing on the 
task at hand. It is worth noting that all the 
information germane to network perfor-
mance is mirrored in the DT, empowering 
the agent to communicate seamlessly with 
the DTs of other entities in a bid to acquire 
more information for making decisions in 
a continuous and stable manner [7]. This 
ability to communicate with the twins of 
other entities in digital space circumvents 
the limitations that stem from sensors or 
communication range resulting in restrict-
ed observation fields or performance deg-
radation arising from sudden failures or 

partial observations due to entity motion. 
Consequently, the proposed DT-enhanced 
RL framework allows the agent to make 
informed decisions and optimize the perfor-
mance of networks even in the most chal-
lenging and dynamic scenarios.

Application in Networks Resource 
Management

Driving Safety Improvement
Connected and intelligent driving is a crucial 
service in 5G and future networks, requiring 
automatic vehicle control and safety-related 
data transmission with stringent performance 
demands for reliability and low latency. Tradi-
tional RL algorithms often struggle to optimize 
the safety-related performance of such services. 
Agents typically act based on past observations, 
avoiding potential transmission failures or unsafe 
vehicle control actions with negative outcomes. 
RL training methods generally involve random 
action exploration or adding noise to decisions 
to learn the rewards of different actions in the 
same environment and optimize performance. 
In safety-related driving services, this random 
decision-making can be disastrous and increase 
driving risks. Collecting training data for resource 
management is also challenging, with sparse 
data on dangerous states and actions, causing 
the agent to converge to a suboptimal solution 
that barely meets safety requirements and avoids 
new actions. While this prevents accidents from 
random actions, it also hinders improvements in 
user service experience.

As shown in Fig. 2, the proposed DT-en-
hanced RL framework addresses these issues 
by allowing different driving behaviors and net-
work resource allocation strategies to be tested 
in various digital domains of DT. This approach 
accumulates training data without increasing 
physical driving risks. By using DT technology, 
the agent can learn whether the risk associated 
with a specific behavior is acceptable or if the 
potential benefits outweigh the risks. This infor-
mation helps update the agent’s behavior 
strategy, avoiding rigid actions due to physical 
driving risks. The DT-enhanced RL training meth-
ods enable the agent to learn through trial and 
error in the digital domain, offering a promising 
solution to optimizing safety-related performance 
in autonomous driving services. Furthermore, 
the DT-enhanced RL training methods allow the 
simultaneous testing of the same behavior in 
multiple digital domains to analyze the probabil-
ity of driving risks. This ensures the agent does 
not overlook the risk due to its low probability 
in the physical space. By considering the behav-
ior’s risk probability in different digital domains, 
the agent learns about the behavior’s safety, 
ensuring it is safe enough for extended use. This 
approach avoids the use of unsafe behaviors, 
ensuring physical driving safety and optimizing 
the user experience.

Highly Dynamic Edge Computing
With the rapid development of AI technology, 
many AI-based image recognition and video 
detection services have emerged, making it 

Collecting training data for resource management is also challenging, with sparse data on dangerous 
states and actions, causing the agent to converge to a suboptimal solution that barely meets safety 

requirements and avoids new actions.
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challenging for users to rely solely on their 
computing power to complete tasks promptly. 
Consequently, users often offload tasks to edge 
server nodes, such as base stations, drones, or 
satellites. These nodes vary in coverage area, 
computing power, and user cost, necessitating 
users to determine the optimal edge server for 
task offloading based on task characteristics, 
current location, network mobility, and resource 
allocation to minimize computation costs or 
delays. However, this joint optimization prob-
lem of access selection and resource allocation 
is typically an NP-hard mixed-integer optimiza-
tion problem, complicating efficient optimization 
using deep neural networks.

Fortunately, the proposed DT-enhanced RL 
framework can significantly enhance the train-
ing speed and performance of RL in addressing 
this problem. For access selection, DTs can con-
nect users to different servers in multiple digital 
domains, allowing for an understanding of differ-
ent access schemes’ impact on task processing 
delays and providing valuable training data. This 
enables the agent to quickly learn optimal access 
node selection for various task characteristics. 
Additionally, the predictive analytics capabili-
ties of DTs can address task processing failures 
caused by user mobility. By predicting whether 
users will move out of an edge node’s coverage 
based on current road conditions and traffic den-
sity, the DT-enhanced RL agents can determine 
the feasibility of transferring tasks to specific 
edge servers, avoiding failed return transmissions. 
The DT-enhanced RL framework also enhances 
the long-term performance of tasks. In dynamic 
environments, vehicle mobility, changing con-
ditions, and the stochastic arrival of tasks pose 
significant challenges to long-term optimization. 
This scenario can be viewed as an online opti-
mization problem, where the input is revealed 
sequentially, and the algorithm must react in real-
time. Online algorithms generally perform worse 
than offline algorithms, which consider the entire 
input at once. The predictive capabilities of the 
DT-enhanced RL framework can improve the 
performance of online optimization algorithms 
by forecasting future vehicle locations, environ-
mental changes, and task generation. As shown 
in Figure 4, the future network performance 
analyzed by DTs can be used to train the agent, 
enhancing its ability to optimize long-term perfor-
mance, reducing training difficulty, and improving 
training speed.

Scenario Adaption
The distributional shift is a major challenge in RL, 
as it can degrade performance when policies are 
trained and applied under different distributions 
[13]. In the internet of vehicles (IoV), this shift 
occurs frequently due to changes in the environ-
ment, task distribution, and location. Conventional 
RL methods, like transfer learning, are generally 
suitable for slow transitions and highly similar sce-
narios but struggle with rapid, drastic changes.

The proposed DT-enhanced RL framework 
addresses the problem from two perspectives. 
First, by placing DTs of IoVs in various digital 
domains, different scenarios’ impact on IoV task 
performance can be analyzed. By testing differ-
ent network resource allocations or autonomous 

driving control schemes in these digital domains, 
the benefits of various actions in specific scenar-
ios can be evaluated. This process accumulates 
training data for the agent across different sce-
narios, enabling the agent to directly tackle 
IoV network optimization problems through 
pre-training techniques. Second, the predictive 
capabilities of DTs can analyze and forecast the 
IoV’s trajectory and network performance over 
time. Based on the IoV’s current location and 
direction, the RL agent can predict the likelihood 
of the IoV leaving the current area and entering 
another. This analysis helps determine whether 
the current network resource allocation scheme 
benefits the long-term performance of the IoV 
network. By leveraging RL’s ability to optimize 
long-term rewards, the agent can anticipate 
the impact of scenario changes on long-term 
rewards. Consequently, optimizing long-term 
rewards enables the IoV to handle scenario tran-
sitions effectively.

Case Study
In this section, we will demonstrate that our 
proposed DT-enhanced RL framework can sig-
nificantly enhance both traditional machine 
learning-based RL methods in the section “DT-En-
hanced QL for Access Point Selection” and deep 
learning-based DRL methods in the section 
“DT-Enhanced DQL for Multi-UAV Trajectories 
Optimization.”

FIGURE 2. DT-enhanced RL training for internet of vehicles driving safety.
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DT-Enhanced QL for Access Point Selection

In this subsection, we show the performance of 
the DT-enhanced Q-Learning (QL) approach in 
a URLLC scenario, focusing on vehicle network-
ing. The scenario involves IoV-generated URLLC 
tasks that must be transmitted to an access point 
(AP) quickly. APs differ in coverage area, cost, and 
transmission rate, complicating network optimiza-
tion. The mobility of IoV adds further challenges, 
as a vehicle may leave the coverage of a node 
during transmission, causing failure. We assume 
the vehicle travels in a straight line at a constant 
speed. When a task is generated, data transmis-
sion begins immediately if the vehicle is within an 
AP’s coverage. If outside, the transmission starts 
upon entering the next AP’s coverage; otherwise, 
it fails. We use the DT-enhanced QL algorithm to 

select the AP for IoV, comparing it to traditional 
physical QL to highlight DT technology’s benefits. 
Therefore the state of the physical QL and DT-en-
hanced QL is the location of the vehicle and APs, 
and the action of them is the selection of the AP. 
To optimize performance, we design the reward 
to correlate positively with transmission success, s 
if the data can be transmitted to the AP within the 
deadline, and negatively with latency and cost. 
Unlike traditional QL, which can perform one 
action per state, DT-enhanced QL can generate 
feedback for multiple actions. Fig. 4 shows that 
the DT-enhanced QL algorithm converges faster 
than physical QL and improves as n (number of 
actions per state) increases. Specifically, with n 
at 5, the algorithm converges at 6000 sets with 
a reward of 85, while physical QL requires over 
20,000 sets for a reward of 65. This is because a 
larger DT with n has stronger model capabilities, 
better assisting QL training.

It should be emphasized that our proposed 
framework enhances the convergence speed and 
performance of RL agents by improving explo-
ration efficiency. In QL, actions are selected 
based on their Q values, which are initially set 
to low values. If an action is never explored, its 
Q value remains low, causing the agent to ignore 
potentially beneficial actions and converge to a 
suboptimal solution [11]. Therefore, in the early 
stage of training, RL usually explores the action 
space with stochastic actions with a high proba-
bility, and decreases the exploration probability as 
the number of training times increases, to achieve 
the convergence of the estimated Q value of the 
explored actions. However, if this exploration 
probability drops too soon, the agent may not fully 
explore the environment, leading to convergence 
at a local optimum, although there are some 
studies exploring probabilities of exploration, this 
topic is beyond the scope of this article [14]. The 
DT-enhanced QL method offers improved per-
formance over traditional QL by facilitating more 
comprehensive exploration of the environment.

DT-Enhanced DQL for Multi-UAV Trajectories 
Optimization

In this subsection, we consider a scenario with 
10 users located in an area without a base sta-
tion, served by 4 UAVs acting as movable access 
points to maximize the average communication 
rate. Orthogonal Frequency Division Multiplexing 
(OFDM) is employed to eliminate interference 
among users and UAVs. According to Friis’ equa-
tion, the communication rate between a UAV and 
a user is primarily determined by the distance 
between them [4]. Each user’s communication 
rate is determined by the UAV that can offer the 
maximum rate. Initially, all UAVs are located at 
the same fixed point, which can be regarded 
as a hangar. Thus, all UAVs must optimize their 
flight trajectories to enhance the communication 
rates for all users. The communication param-
eters are set as N = 100, M = 4, p = 100 mW, 
and σ2 = −174 dBm/Hz. Additionally, all UAVs 
maintain a height of 5 meters and a speed of 8 
m/s. Figure 6 illustrates the convergence perfor-
mance of the physical Deep Q-Learning (DQL) 
and DT-enhanced DQL, where the dashed line 
represents the original data source, and the solid 

FIGURE 4. The convergence performance of DT-enhanced RL by simultaneous 
trials on different actions.

FIGURE 3. DT-enhanced RL training for vehicle edge computing.
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line depicts the moving average data with a 
window of 10 to better demonstrate algorithm 
performance. As is shown in Fig. 5 the DT-en-
hanced DQL algorithm converges faster and 
achieves a higher performance compared to phys-
ical QL, with improvements as k (the length of 
the DT predicting the environmental state at a 
future moment) increases. This improvement is 
due to DT’s ability to predict future environmental 
states, which reduces the TD error in the agent’s 
long-term reward estimate. Consequently, the 
fluctuation in the TD error estimate is reduced, 
enhancing convergence speed. As the long-term 
reward estimate becomes more accurate, reflect-
ing the real long-term reward rather than relying 
solely on the current state, the agent’s conver-
gence direction towards maximizing long-term 
rewards is improved, thus enhancing overall con-
vergence performance.

Research Challenges and Open Issues

Noise in DT
DT-enhanced network optimization often presup-
poses a perfect replication of physical properties 
in the digital space, which is not possible due 
to inherent sensor accuracy limitations and 
unavoidable transmission errors. This makes the 
input data for RL training with DT-generated data 
inherently noisy. Additionally, accurately pre-
dicting future events is challenging with current 
technology, which impacts the transfer probabil-
ity, a vital parameter defining Markov decision 
processes.

A naive approach to handling DT noise is 
to average the transition data in multiple digi-
tal domains, reducing the effect of noise if it is 
unbiased. Another potential approach involves 
treating the noisy digital space and physical space 
as different but similar Markov decision processes. 
This can be achieved through pre-training in dig-
ital space or meta-learning in multiple different 
digital domains and fine-tuning with data in the 
physical space. Moreover, the noise in DT can 
be utilized to achieve virtual hybrid deployment 
of multiple agents or multiple users, deploying a 
certain number of agents or users in the physical 
space to collect accurate data while deploying the 
remaining agents or users in the digital space to 
reduce training costs.

Extra Training Delay of DT Construction
Existing research on DT systems commonly 
assumes pre-existing DTs, which can assist in algo-
rithm design and decision-making for network 
optimization. However, the construction of DT 
before starting agent training can incur additional 
training delays. If the DT is constructed slowly, 
the time spent waiting for its construction may 
be comparable to the time spent training the 
agent using only the physical space. This situation 
renders the benefits of using DT to assist agent 
training insignificant. One possible solution is to 
start training the auxiliary agent when the DT is 
not yet constructed. However, since the DT is not 
yet constructed, it will be noisy, and the training 
data will not be fully reliable. Thus, it is necessary 
to choose the right time to start training with a 
DT-enhanced agent to achieve a tradeoff between 
training speed and accuracy.

Conclusion
To improve the training performance and con-
vergence speed, and reduce training costs in 
resource management, we have proposed a 
cutting-edge DT-enhanced RL framework. Incor-
porating the distinctive features of safe action 
exploration, simultaneous twin execution, and 
accurate prediction, DT-enhanced RL achieves 
the benefits of improving training efficiency and 
cost-effectiveness in resource management. We 
have further discussed some typical applica-
tions in resource management, including driving 
safety improvement, vehicular edge computing, 
and scenario adaptation. A case study of RAT 
selection in resource management has been 
provided, demonstrating that the proposed 
method significantly improves the RL perfor-
mance and convergence speed. As research 
challenges that may undermine the implemen-
tation of the proposed framework, the noise 
and construction cost of DT have been pre-
sented and some potential solutions have been 
discussed.
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