
IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, DECEMBER 0 1

Towards Native Intelligence: An Efficient and
Flexible AI Services Provision Scheme in

Multi-layer Heterogeneous Networks
Jingchao He, Student Member, IEEE, Nan Cheng, Senior Member, IEEE, Ruijin Sun, Member, IEEE, Ruqian
Zhang, Conghao Zhou, Member, IEEE, Wei Quan, Senior Member, IEEE, Changle Li, Senior Member, IEEE,

Abstract—To fulfill future diverse user requirements, 6G net-
works are envisioned to provide everyone-centric customized
services ubiquitously and precisely. However, the diversity in user
requirements and the heterogeneity in network resources chal-
lenge conventional network operators in network management
and service provision. In this paper, we investigate the artificial
intelligence (AI) service provision in the multi-layer heteroge-
neous network. To provide ubiquitous intelligence to users with
different computing requirements, an intelligence-native network
architecture is designed. Based on the proposed architecture and
the AI model stitching mechanism, we formulate the joint AI
provision and access selection problem as a mixed integer non-
linear programming (MINLP) problem to maximize the average
user satisfaction value and user satisfaction rate. Then, a heuristic
solution based on Dung Beetle algorithm is proposed to optimize
the AI model selection, AI service deployment, user access, and
stitching coefficient jointly. Extensive simulations are conducted
to evaluate the performance of our proposed architecture and
algorithm.

Index Terms—User-centric service, artificial intelligence (AI)
model, multi-layer network, service deployment.

I. INTRODUCTION

THE rapid development of mobile communication net-
works has led to an exponential increase in the number

of mobile devices, with projections estimating this number
will reach 19.08 billion by 2025 and 29 billion by 2030 [1].
These devices continuously generate unprecedented volume
of data, which involves inestimable potential values in future

This work was supported by the National Key Research and Development
Program of China (2020YFB1807700), and the Fundamental Research Funds
for the Central Universities and the Innovation Fund of Xidian University
under Grant YJSJ24017.

Jingchao He, Nan Cheng (corresponding author), Ruijin Sun, and Changle
Li are with the State Key Laboratory of ISN and School of Telecom-
munications Engineering, Xidian University, Xi’an 710071, China (e-mail:
jchhe@stu.xidian.edu.cn; dr.nan.cheng@ieee.org; sunruijin@xidian.edu.cn;
clli@mail.xidian.edu.cn).

Ruqian Zhang is with the AI and Intelligent Operation Cen-
ter, China Mobile Research Institute, Xi’an 710071, China (e-mail:
zhangruqian@chinamobile.com).

Conghao Zhou is with the Department of Electrical and Computer Engi-
neering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada (e-mail:
c89zhou@uwaterloo.ca).

Wei Quan is with the School of Electronic and Information Engi-
neering, Beijing Jiaotong University, Beijing 100044, China (e-mail: wei-
quan@bjtu.edu.cn).

Copyright (c) 2024 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

service fulfillment, network optimization, etc. However, the
fundamental bottlenecks in processor speed, memory size,
battery life, and heat dissipation limit the data processing in
mobile devices [2], [3]. Since ChatGPT’s launch by OpenAI
on November 30, 2022, large language model (LLM) technolo-
gies have spurred an artificial intelligence (AI) renaissance.
ChatGPT excels across various domains like content creation,
image recognition, math computations, and code generation,
often outperforming human experts. Industries are not only
building their own large models, like Google’s AlphaFold
for biomedicine [4], IBM’s Watson for business [5], and
ByteDance’s LlamaGen for art and graph design [6], but users
are also keen on localizing and customizing these models for
enhanced daily productivity.

Deploying LLMs on the user side ensures that their capa-
bilities are accessible anytime and anywhere, even in envi-
ronments with limited or no network connectivity. However,
limited hardware capacity presents a significant challenge for
deploying LLMs on mobile devices, while offloading data to
cloud data centers can lead to unacceptable delays and high
transmission costs [7]. In recent years, researchers have pro-
posed deploying computational resources at the network edge
and developing a mobile edge computing (MEC) architecture
[8]–[10]. Nevertheless, due to time-varying and unpredictable
user distributions, installing suitable computing units on edge
servers is prohibitively expensive, especially compared to the
overpowered units found in centralized server clusters such as
Microsoft Azure or distributed idle terminals. Therefore, an
innovative multi-layer heterogeneous network architecture is
urgently needed to effectively incorporate dispersed network
resources and enable flexible resource utilization for future
users [11].

Despite the advancements in the Fifth Generation (5G)
mobile system [12], the pre-defined “standard” services like
enhanced Mobile Broadband (eMBB), Ultra-Reliable Low
Latency Communications (URLLC), and massive Machine
Type Communications (mMTC) are not flexible enough to
cater to the diverse and dynamic needs of users. The tradi-
tional tunnel-based serving mode in 5G ensures good average
performance but struggles to guarantee Quality of Experience
(QoE) for everyone due to varying user tasks and requirements.
Therefore, the Sixth Generation (6G) mobile system aims
to provide “everyone-centric” customized services anywhere
and anytime, utilizing heterogeneous network resources and
pervasive AI [13]. This shift from 5G’s “technology-driven” to

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3516730

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 01,2025 at 13:33:36 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, DECEMBER 0 2

6G’s “service-oriented” approach represents a paradigm shift
in mobile communication. In 6G, our focus is on achieving a
fine service granularity, guaranteeing every user’s personalized
QoE through adaptive end-to-end service provisioning algo-
rithms tailored to different application scenarios and network
conditions.

The challenge lies in ensuring tailored and everyone-centric
services to diverse user groups with varying needs, both ubiq-
uitously and immersively. Users require integrated services
that encompass multi-dimensional resources like storage, data
rate, security, reliability, and knowledge, and the supports of
complex combinations of virtual network functions or micro-
services. However, the traditional best-effort service provision-
ing does not have a specific network performance metrics
specification for multi-dimensional services, and struggles
to adapt to the diverse and dynamic needs of future user
applications [14]. Recent studies have demonstrated the benefit
of AI in network management, where AI is embedded into the
software-defined networking (SDN) controller to promote the
resource utilization [15], [16]. By distributing the AI to the
user side, network manager can collect and extract user prefer-
ence information, and provide proactive service optimization.
Besides, AI models—such as convolutional neural networks
(CNNs) for image processing, generative adversarial networks
(GANs) for image generation, and Transformer models for
natural language processing tasks—once trained, encapsulate
a vast amount of knowledge and rules within their parameters.
These models can be serialized, stored, compressed [17],
[18], and later reloaded for inference tasks without requiring
retraining. This capability allows them to function as self-
contained modules or services, a concept often referred to
as AI as a Service (AIaaS) or AI service provision [19]. By
integrating AI into network management and AIaaS, it can
become an integral part of the network architecture, known as
native intelligence or an intelligence-native network [20], [21].
This fusion allows the network to dynamically adapt to user
needs in real time, creating a highly responsive and intuitive
digital ecosystem. Such networks have the potential to trans-
form traditional network infrastructures, enabling continuous
service evolution and delivering more personalized, efficient,
and intelligent digital experiences.

However, existing research on AI service provision focuses
on deploying services at the network edge [13], [22]–[27],
while studies on multi-layer heterogeneous networks primarily
concentrate on network management or traffic offloading for
Internet of things (IoT) devices [8], [28]–[37]. To enable
the intelligence within communication networks and realize
everyone-centric service mechanisms, the study on AI service
provision in multi-layer heterogeneous networks is urgently
needed. For the excessive cost of computing units, how to
design the network architecture and distribute the limited re-
sources efficiently is fundamental. Then, since user distribution
and their service requirements are time-varying and differen-
tiated, how to schedule the expensive computation resources
ably is the second problem to be solved. Further, existing stud-
ies on AI service provision consider AI service as an exclusive
service block and ignore the intrinsic knowledge in trained
models, which incurs huge resource waste in computation

and caching. Therefore, the third problem lies in promoting
resource utilization in the provision process. Recent works
on semantic communication [38], [39] and computer vision
[40] have illustrated the potentiality of AI model stitching for
knowledge migration and model multiplexing, which utilizes
the same portion of AI models for users with different service
requirements to reduce the training process and computing
resource occupation. Nevertheless, inevitable consideration on
stitching decision is attached, for the index of it affects the
service performance, inference delay, and resource cost, which
exacerbates the complexity of the problem.

In this paper, we explores the efficient and flexible de-
ployment of AI services within intelligence-native networks.
Firstly, a novel multi-layer heterogeneous network architecture
based on native intelligence is proposed. Considering the
limitations of network resources and diverse user require-
ments, the joint AI provisioning and access selection prob-
lem is formulated as a mixed-integer nonlinear programming
(MINLP) problem, with the objective of maximizing user
satisfaction and service acceptance. To minimize computing
resource consumption and enhance service efficiency, model
stitching is introduced to enable customization and reuse of
AI models for users with varied needs. Subsequently, a Dung
Beetle-inspired algorithm is developed to jointly optimize AI
model selection, service deployment, user access, and stitching
coefficients. Finally, extensive simulations are conducted to
evaluate the performance of the proposed algorithm in terms of
convergence, user satisfaction value, user satisfaction ratio, and
resource consumption. The main contributions of this paper are
summarized as follows.

1) We proposed an intelligence-native architecture to per-
ceive and recognize the user requirements intelligently.
The proposed architecture leverages and utilizes various
system resources such as sensing, computing, commu-
nication, to facilitate diverse AI methods and tailored
services to meet individual needs.

2) Based on the proposed architecture, the stitching tech-
nique is introduced to provide a more flexible and fine-
grained AI model provision than existing studies. Con-
sidering the limitations in computing resources and user
requirements on service type, delay, and service perfor-
mance, a Dung Beetle-based algorithm is presented to
optimize the AI model selection, AI service deployment,
user access, and stitching index, jointly.

3) Extensive simulation results are exhibited to evaluate
the proposed algorithm in convergence, user satisfaction
value, user satisfaction ratio, and resource consumption.
Then, we execute our algorithm over a conventional AI
service module (without the stitching mechanism) to eval-
uate the resource consumption of the introduced stitch-
ing mechanism. It is demonstrated that the introduced
stitching technique achieves a higher user satisfaction
value and ratio, while reducing the average resource
consumption by up to 20%.

The remainder of this paper is organized as follows. The
related work is introduced in Section II. In Section III,
the proposed 6G intelligence-native network architecture is

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3516730

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 01,2025 at 13:33:36 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, DECEMBER 0 3

introduced. In Section IV, we introduce the system model. The
AI service provision and user access problem in multi-layer
network is formulated in Section V. Then, a Dung Beetle-
based approach is proposed to solve the formulated problem
in VI. We evaluate the performance of the proposed algorithm
through extensive simulations in Section VII. Section VIII
concludes this paper.

II. RELATED WORK

Recently, several works on AI service deployment and
multi-layer network architecture have been conducted.

In [13], a preliminary insight of network AI architecture
with integrated network resources and AI capacities is intro-
duced. [22] investigates AI service provisioning using network
slicing. Then, the AI service deployment and resource-pooling
are optimized to balance AI service performance with resource
consumption. [23]–[27] study the AI service deployment in
IoT. To mitigate the imbalance between each IoT user, the
user allocation modules and virtualization configurations are
optimized to maximize the flow rate of each service [26].
Similarly, the sub-task deployment and computing resources
among multiple mobile devices are scheduled in [24]. To
minimize the end-to-end delay, an MINLP problem is for-
mulated, which is solved by an Markov approximation-based
approach. In industrial IoT (IIoT) scenarios, the deployment
of AI services is crucial for enhancing operational efficiency
and decision-making by enabling real-time data processing,
predictive maintenance, and optimized resource management
across resource-poor industrial devices. To minimize the av-
erage service delay of IIoT devices, the requirements on
service performance, sampling rate adaptation, inference task
offloading, and edge computing resource allocation are jointly
considered in [23]. Similarly, a time-slotted system incorpo-
rating AI service deployment, computing resource allocation,
and wireless channel allocation is presented in [25], and a
deep learning-based algorithm is proposed to minimize total
processing delay and error inference penalty. Examining a
network that mimics human neural and cognitive functions,
[27] explores the AI service deployment and resource allo-
cation within a human-like networking architecture, where
the communication, computation, and memory resources are
optimized to minimize the average end-to-end delay. Current
research on AI service provision is in its early stages, and
the network architectures considered are limited to single-
layer simple networks. As future network structures become
increasingly complex, existing methods and architectures will
face challenges in resource scheduling and service provision.

The space-air-ground integrated network (SAGIN) is a
comprehensive communication framework that seamlessly in-
tegrates satellites, aerial platforms, and terrestrial networks
to provide ubiquitous global coverage and enhanced con-
nectivity [28], [29]. This multi-layered network architecture
supports a wide range of applications, from remote sens-
ing and broadband communications to disaster management
and defense operations, ensuring reliable data transmission
across diverse and often challenging environments. To cope
with the mobility of vehicles and coverage deficiency of

terrestrial networks, an SAGIN-assisted vehicular network is
proposed in [30] to utilize the flexibility of aerial networks and
coverage ability of satellite networks to provide ubiquitous
network access, and a federated RL-based traffic offloading
mechanism is provided to evaluate the proposed system.
Focused on establishing trustworthy and privacy-preserving
vehicular networks within a 6G framework, [31] analyzes the
requirements and challenges in ensuring data security and user
privacy. Then, a trustworthy and privacy-preserving network
architecture is proposed to provide rapid decision-making,
reputation feedback mechanisms, traceability mechanisms, and
Sybil attack resistance ability. In our previous works [32], the
SDN and network functions virtualization (NFV) are utilized
to support multi-dimensional resource scheduling in a large-
scale dynamic network environment. Similarly, based on the
SDN, a distributed architecture is proposed in [8] and the
multi-controller deployment problem is studied.

Propelled by the widespread connectivity and extensive
coverage offered by SAGINs, there has been a significant
transformation in resource provision by MEC. This shift has
moved from traditional terrestrial edge computing to aerial or
orbital edge computing, particularly in remote regions [33].
In [34], a hybrid cloud and MEC scenario based on SAGIN
is considered to schedule the data offloading, where user
pairing and partial offloading are optimized to minimize the
energy consumption and average latency. Similarly problem is
studied in [35], where civil aircraft are introduced to enhance
the current satellite-terrestrial networks in terms of coverage,
capacity, and task scheduling. Aiming to minimize the delay
and energy consumption, a generalized benders decomposition
method is proposed to optimize the access strategy, transmit
power, computing resources, and delay tolerance. Orbital edge
computing (OEC) extends the principles of edge computing to
satellites and other space-based assets, playing a critical role
within SAGINs by processing data directly at the orbit level. In
[33] and [36], two types of OEC architecture are presented. In
[33], a hierarchical satellite network composed of both GEO
and LEO satellite layers is designed to relay the data to a
remote data center. On the contrary, a collaborative mechanism
is utilized within the LEO satellite layer to distribute the
data to nearby satellites and reduce the processing delay [36].
Although these studies considered the network management
or traffic offloading for IoT devices, the native-intelligence is
not included in their contributions.

III. 6G NETWORK ARCHITECTURE BASED ON NATIVE
INTELLIGENCE

To address diverse user demands, we propose a 6G network
architecture centered on native intelligence, named as 6G
Network AI. This architecture utilizes high-speed, low-latency
transmission channels to integrate distributed communication
resources across a multi-layer heterogeneous network for AI
model deployment. Users can directly access and utilize these
AI models through the network, leading to enhanced service
quality, greater intelligence, and more personalized user expe-
riences.

To achieve comprehensive intelligent management and pre-
cise on-demand services in future networks, the network ar-

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3516730

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 01,2025 at 13:33:36 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, DECEMBER 0 4

Users

6G Network AI

1st layer

2nd layer

Low-requirement service

AI model uploading (Service 1)

High-requirement service

AI model uploading (Service 2)

AI model downloading

Pre-trained AI models

Untrained AI models

AI model reusing

AI models from users

AI model stitching

CloudCloud

Computer Vision
Related Services

Recommend
Related Services

NLP or Voice Recognition
Related Services

Reinforcement Learning
Related Services

Other ServicesUsers

6G Network AI

1st layer

2nd layer

Low-requirement service

AI model uploading (Service 1)

High-requirement service

AI model uploading (Service 2)

AI model downloading

Pre-trained AI models

Untrained AI models

AI model reusing

AI models from users

AI model stitching

Cloud

Computer Vision
Related Services

Recommend
Related Services

NLP or Voice Recognition
Related Services

Reinforcement Learning
Related Services

Other Services

Fig. 1: 6G network architecture based on native intelligence.

chitecture must meet the dual requirements of scenario aware-
ness and service customization. Accordingly, the network
architecture proposed comprises three intercooperative layers:
the cognitive layer, the decision layer, and the intelligent
layer. The primary responsibility of the cognitive layer is
to interpret user intent and network capabilities, construct
an all-scenario information ontology, and accurately identify
the user’s context and needs during the service process. The
decision layer, which is based on scenario identification results
from the cognitive layer, perceives resources and allocates
them as needed. The intelligent layer is the core of the
entire intelligence-native network architecture. Based on the
constructed AI model library, knowledge base, and intent
library, it stores and applies knowledge accumulated during the
cognitive and decision processes to enhance decision accuracy
and execution efficiency. Additionally, it delivers ubiquitous
AI services directly to users through network nodes, thereby
significantly reducing transmission delay and promoting the
utilization of dispersed computing resources.

The 6G Network AI, as shown in Fig. 1, is a multi-
layer network AI architecture comprising various 6G network
element nodes. By integrating and coordinating cross-domain
sensing, storage, communication, computing, control, and AI
resources, this architecture processes local and regional user
data and executes distributed AI models to provide personal-
ized services for each user.

On the user side, when an AI service request from the
user device arrives at the network, the cognitive layer begins
to function. It employs a scenario knowledge base and AI
technologies, such as natural language processing, to accu-
rately identify and classify the user’s needs and perform
preliminary processing. The decision layer then receives the
processed scenario and requirement information. At this layer,
the system designs a detailed on-demand service plan based on
the task type. This plan includes formulating service strategies,
drawing from the knowledge base and AI model library,
and optimizing service deployment according to the current
network resource status and network elements’ computing
capabilities.

The intelligent layer activates once the decision layer com-
pletes the user service configuration. This layer is responsible
for deploying and invoking AI models to execute specific
tasks and feedback the results to the user, thus achieving on-
demand serving. The deployment and invocation strategies for
AI models are diverse: they can involve the direct invocation
of a single AI model, the reuse and combination of multiple
AI models, or the uploading and installing of user-customized
models. Invoking a single AI model entails selecting the
most suitable model from those already deployed for the
current task. Reusing AI models improves model utilization,
reduces redundant resource consumption, and lowers opera-
tional costs. The combination of multiple AI models integrates

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3516730

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 01,2025 at 13:33:36 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, DECEMBER 0 5

the strengths of each model, resulting in more precise and
comprehensive service outcomes. Allowing users to upload
their AI models further enhances the personalization and
flexibility of network services, enabling them to deploy their
custom-developed AI models into the network for use in
specific scenarios.

The intelligence-native network architecture designed in this
paper centers around the intelligent layer, achieving ubiquitous
and personalized services through the close coupling of mod-
ular AI models with network nodes. This architecture signifi-
cantly enhances the serving capabilities and efficiency of the
network while improving service adaptability and customiza-
tion levels through the flexible invocation and combination
of different AI models. Moreover, it allows users to upload
custom AI models to meet more personalized service needs,
providing a scalable, flexible, and efficient network solution.
This enables the 6G network to offer more intelligent and per-
sonalized service experiences, improving resource utilization
efficiency and user satisfaction.

IV. SYSTEM MODEL
Based on the proposed 6G Network AI, this section con-

structs an on-demand service system with stitchable AI model.
The symbols used in this paper are listed in Table I.

A. Stitching Service Model
Consider a network with I layers, and each layer of the net-

work contains network nodes deployed with computing units,
where the number of nodes, transmission rate, and computing
capacity of layer i are denoted by Ni, Ri, and Ci, respectively.
The top network layer, i.e., the I-th layer, can be likened to
the cloud layer with abundant computing resources. As the
layer descends, the nodes become more numerous, and their
computing resources are more dispersed. The lowest level,
i.e., the first layer, can be regarded as the user layer, where
the service requests initiate. Let Q be the set of user service
requests, defined as Q = {q|q = 1, 2, . . . , |Q|}, where |Q| is
the number of services. Each service q is associated with a
triple (Zq, Tq, Aq), where Zq denotes the desired data volume
to be processed, Tq denotes the maximum tolerable delay,
and Aq is the desired model performance. Without loss of
generality, we consider one type of application in each decision
making process, and the type of service q is denoted by Mq .
AI model library is denoted by M = {M1,M2, . . . ,MN},
where N is the number of models.

Generally, the AI model in the model base is designed and
trained in advance by statistical requirements on inference
delay, inference accuracy, etc. When the service requests from
users arrive, the network operator is able to choose and install
the AI model with sufficient performance to fulfill the require-
ments. However, as user demands become more strict and
complex, the limited number of models and traditional reliance
on single-metric model selection criteria will increasingly
prove inadequate. Nonetheless, blindly increasing the number
of models with diverse models is not cost-effective.

In this paper, we utilize the model stitching technique to
stitch available AI models in model base for users with non-
default requirements and reduce the performance redundancy

TABLE I: NOTATIONS

Notations Description
Q Set of user service requests.
M Collection of AI models.
N Number of AI models in the model library.
β Collection of stitching index for all users.
L Deployment location matrix of AI models.
X Position matrix of dung beetle population.
Y Collection the service reception index for all users.
Ri The transmission rate of i-th layer network.
Ci The computing capacity of i-th layer network.
βp
q Stitching ratio vector of preceding model for user

request q.
βs
q Stitching ratio vector of succeeding model for user

request q.
βns
q Index vector of model without stitching for user

request q.
Zq Data volume of user request q.
Tq Delay requirement of user request q.
Aq Required model performance of user request q.
Lp
q Deployment location vector of the preceding model

of user request q.
Ls
q Deployment location vector of the succeeding model

of user request q.
Lns
q Deployment location vector of model without

stitching of user request q.
tq Actual end-to-end delay of user request q.
ctrq Total transmission resource consumption of user

request q.
yq The reception index of user request q.

by replacing unnecessary models with high performance.
Based on this, multiple users who require the same part of the
model can reuse the installed model, thereby reducing resource
consumption. Without losing generality, we consider the AI
model is able to be dismantled and stitched by two separative
parts of models in the same library [40], [41]. Intuitively, from
the inference sequence, the front part of the model is defined
as the preceding model, and the remaining part is defined as
the succeeding model.

The selected models for service q are defined as ms
p and

ms
r, where ms

p represents the front model and ms
r denotes

the rear model in stitching. For service q, a one-dimension
vector βp

q = [βp
1,q, β

p
2,q, · · · , β

p
N,q]

T is introduced to represent
the stitching ratio of the preceding model, where βp

n,q ∈ [0, 1)
denotes the ratio of model n served as the preceding model.
If 0 < βp

n,q < 1, it denotes that model n is utilized as
the preceding model, and the stitching ratio is βp

n,q; and
if βp

n,q = 0, it denotes that model n is not utilized for
service q. At the same time, only one element in βp

q is
positive, and the others equal 0. The collection of it is
denoted by matrix βp = [βp

1 ,β
p
2 , ...,β

p
|Q|]. Similarly, βs

q =

[βs
1,q, β

s
2,q, · · · , βs

N,q]
T denotes the succeeding model, and the

collection of it is denoted by matrix βs = [βs
1,β

s
2, ...,β

s
|Q|].

Besides, an one-hot vector βns
q = [βns

1,q, β
ns
2,q, · · · , βns

N,q]
T is

introduced to denote the situation without stitching, where
βp
n,q = 1, it denotes the model n is utilized directly for user

q without stitching. The collection of it is denoted by matrix
βns = [βns

1 ,βns
2 , ...,βns

|Q|]. Then, the inference performance
of q is defined as aq = f(βp

q ,β
s
q ,β

ns
q). The collection of the

stitching index is denoted by β = {βp,βs,βns}.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3516730

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 01,2025 at 13:33:36 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, DECEMBER 0 6

B. Service Deployment Model

In stitchable neural network technology, we typically use
a small-scale model as the preceding part and a large-scale
model as the succeeding part, known as the fast-to-slow
stitching direction. Each part of the model can be deployed
on different locations or the same location. Considering the
network resource distribution and user requirements, user can
select appropriate network layer to access and offload the
data to be processed. If the preceding and succeeding models
are deployed on different layers, intermediate output will be
transmitted to the layer with succeeding model. The final result
transmission after processing can often be neglected due to its
minimal computational load and smaller data size.

For user request q, a one-hot vector Lp
q =

[lp1,q, l
p
2,q, · · · , l

p
I,|Q|]

T represents the deployment location
of the preceding part of the model, where the binary
variable lpi,q = 1 indicates the preceding model is installed
on the i-th layer of network, and lpi,q = 0 otherwise.
Ls
q = [ls1,q, l

s
2,q, · · · , lsI,q]T represents the deployment location

of the succeeding part, where ls1,q = 1 indicates the succeeding
model is deployed on the i-th layer of the network, and
lsi,q = 0 otherwise. Lns

q = [lns1,q, l
ns
2,q, · · · , lnsI,q]T refers to the

deployment location of the AI model without stitching, where
lns1,q = 1 indicates the stand-alone model for service q is
installed on the i-th layer of network, and lnsi,q = 0 otherwise.
If a stand-alone model for service q is deployed, it will
not need the preceding model and succeeding model, which
means that all the elements in Lp

q , Ls
q , βp

q , and βs
q equal 0.

The location matrix collection L is defined as

L = {Lp,Ls,Lns}, (1)

where Lp = [Lp
1,Lp

2, · · · ,Lp
|Q|] represents the deploy-

ment position matrix of the preceding stitching model,
Ls = [Ls

1,Ls
2, · · · ,Ls

|Q|] represents the deployment posi-
tion matrix of the succeeding stitching model, and Lns =
[Lns

1 ,Lns
2 , · · · ,Lns

|Q|] represents the deployment position ma-
trix of a single AI model. After stitching the model, these
position matrices jointly determine the deployment location.
Denote binary variable yq = 1 to signify the reception of
service q, and yq = 0 otherwise.

C. Delay Model

Data transmission and model execution dominate the delay
for service q, which contains a certain amount of data to
transmit and process. We express the total delay of service
request q, which spans from task initiation to completion, as

tq = ttrq + texq , (2)

where ttrq is the delay of data transmission from users to the
installed AI model, and texq is the inference delay.

The transmission delay is expressed as

ttrq =

I∑
i=1

Zq

Ri
lnsi,q +

I∑
i=1

Zq

Ri
lpi,q +

I∑
i=ip

Zout
q

Ri
lsi,q, (3)

where Zout
q is the data volume of service q output from

the preceding model, and ip denotes the layer index of the

preceding model. The amount of output data of the task
data after being processed by the pre-model is influenced by
both the stitching coefficients and AI model. Denote function
φ
(
βp
n,q

)
to represent the relation between stitching coefficient

and volume of output data for service q. The output data
amount Zpout

q of task q is expressed as

Zout
q = φ

(
βp
n,q

)
· Zq. (4)

D. Resource Consumption Model
In certain scenarios, multiple user requests may arrive

simultaneously, necessitating the execution of stitching oper-
ations on the same layer of the same model to accomplish
various tasks. Alternatively, a single AI model may need to
handle similar tasks for different users. Therefore, this paper
considers the reuse of partially stitched models to reduce
resource consumption and improve service efficiency. The
indicator function γ (·) is introduced to denote the deployment
of AI model, and M(βp

n) to denote the deployment of model
n with stitching coefficient βp

n,q . For example, γ (i,M(βp
n))

denotes whether the preceding part of model n with stitching
coefficient βp

n is deployed on layer i, where γ (i,M(βp
n)) = 1

indicates that as one model is deployed, and γ (i,M(βp
n)) = 0

otherwise.
Deploying AI models to network nodes requires signifi-

cant computational resources of CPUs or GPUs, which is
influenced by the model type and stitching ratio. As the
computation capacity is limited, it is crucial to consider the
resource consumption in service deployment. The computation
resource consumption of the preceding part of deployed model
is expressed as

cp(i,βp
n) = γ (i,M(βp

n))σ (βp
n)Cn, (5)

where Cn is the computing resource consumption of the
module n. σ (·) denotes the ratio of parameter amount of the
preceding part to that of the original model. Similarly, the
resource consumption of the succeeding part is expressed as

cs(i,βs
n) = γ (i,M(βs

n)) ς (β
s
n)Cn, (6)

where ς (·) denotes the occupied computing resources of the
succeeding part. The expression for the module’s resource
consumption without stitching is

cns(i,βns
n) = γ (i,M(βns

n))Cn. (7)

Since the model may deploy far from user side, the trans-
mission cost is indispensable, which is expressed as

ctrq =

I∑
i=1

Zq

Ri
lnsi,qki +

I∑
i=1

Zq

Ri
lpi,qki +

I∑
i=ip

Zout
q

Ri
lsi,qki, (8)

where ki denotes the average transmission power of layer i.

V. PROBLEM FORMULATION
In this section, we investigate the stitchable AI service

deployment in the multi-layer heterogeneous network. An
MINLP problem is formulated to maximize the total system
profit under the constraints on service delay, inference perfor-
mance, and computing resources.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3516730

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 01,2025 at 13:33:36 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, DECEMBER 0 7

A. Service Provision Constraints
The system must meet the delay requirements for each user

request, ensuring timely responses to maintain user satisfac-
tion. Additionally, the system must fulfill the requirements on
model performance, ensuring the AI model delivers accurate
and reliable results as expected by the user. The constraints
on service provision are expressed as

C1 : tq ≤ Tq,∀q ∈ Q; (9)

C2 : aq ≤ Aq,∀q ∈ Q. (10)

B. Capacity Constraints
For each layer of the network, the computation resource is

limited, and the occupied resources of each module cannot
exceed the capacity, which is expressed as

C3 :
∑

n∈[1,N]

cp(i,βp
n) +

∑
n∈[1,N]

cs(i,βs
n) +

∑
n∈[1,N]

cns(i,βp
n)

≤ Ci,∀i ∈ {1, 2, ..., I}.
(11)

C. Service Deployment Constraints
For each service request q, the deployment layer of the front

model must be earlier than or equal to the post model, which
ensures the logical order of AI model and the correctness of
data flow, which is expressed as

C4 :
∑

i=[1,i1]

lsi,q ≤
∑

i=[1,i1]

lpi,q,∀q ∈ Q,∀i1 ∈ {1, 2, ..., I}.

(12)
Constraints C5 to C6 must be satisfied in order to guarantee

that the AI model of receipted service must be installed, which
is express as

C5 : yq ≤
∑

i=[1,I]

lpi,q +
∑

i=[1,I]

lnsi,q,∀q ∈ Q; (13)

C6 : yq ≤
∑

i=[1,I]

lsi,q +
∑

i=[1,I]

lnsi,q,∀q ∈ Q, (14)

where binary variable yq = 1 signifies the reception of service
request q, otherwise yq = 0. The collection service reception
index is represented as Y.

For each service request q, the provided model must be
complete to guarantee correct inference process. This means
that the sum of the stitching coefficients must equal 1, or the
deployed model for q is not stitched, which is expressed as

C7 : ∥βp
q∥+ ∥βs

q∥+ ∥βns
q ∥ = 1 ,∀q ∈ Q. (15)

D. MINLP Problem
In the paper, the stitching coefficient and model deployment

are optimized to maximize the total system profit P . Combined
with constraints C1−C7, the joint AI provision and user access
selection problem is formulated as

P1 : max
L,Y,β

P = R− C

s.t. C1 − C7,

C8 : L ∈ {0, 1, ..., I},
C9 : β ∈ [0, 1] .

(16)

where R denotes the user satisfaction value of all service
requests and C represents the sum of cost in resource con-
sumption. The satisfaction value is expressed as

R =
∑
q∈Q

yq(1 + ρtq + ρaq)Rq +

∑
q∈Q yq

|Q|
R′, (17)

where Rq is the inherent revenue when service q is fulfilled,
and R′ is revenue for service reception. ρtq and ρaq measure
the fulfillment of the requirements on delay and inference
performance [42], i.e.,

ρtq =

{
Tq−tq
Tq

, if (9) is fulfilled,

0, otherwise;
(18)

ρaq =

{
min(

aq−Aq

Aq
, 2), if (10) is fulfilled,

0, otherwise.
(19)

We formulate this mathematical problem to optimize the
provision of AI models in a multi-layer heterogeneous network
to maximize total system profit while meeting service re-
quirements and performance constraints. This paper considers
stitching AI models from the library to meet specific user
service requests, reducing redundancy and enhancing resource
efficiency. By incorporating stitching coefficients and deploy-
ment location matrices, this model satisfies the constraints
on delay, performance, and capacity, ultimately balancing
the utilization of computational resources and achieving high
user satisfaction with minimized costs. For the binary and
continuous variables and non-linear constraints, the proposed
problem can be categorized into an MINLP problem.

VI. DBSSO ALGORITHM

The problem formulated in this paper involves optimizing
multiple integer and continuous variables under constraints,
posing significant challenges for conventional approaches like
deep reinforcement learning. The Dung Beetle algorithm,
by effectively balancing exploration and exploitation within
the search space, excels in identifying optimal solutions to
complex optimization problems. In this paper, we propose the
Dung-Beetle-based Stitching Coefficient and Service Access
Optimization (DBSSO) algorithm [43]. In this algorithm, the
stitching coefficients and deployment positions are encoded as
genes of the individual dung beetles, forming the population
matrix. The objective function is transformed into a fitness
function, allowing the dung beetle population to evolve based
on their adaptability. Our goal is to find the individual with
the maximum fitness value in the dung beetle population,
representing the optimal service strategy. The optimization
matrix of the proposed algorithm in the t-th iteration is
expressed as

Xt =


xt1
xt2
...

xt
V

 =


xt
1,1 xt

1,2 · · · xt
1,D

xt
2,1 xt

2,2 · · · xt
2,D

...
...

. . .
...

xt
V,1 xt

V,2 · · · xt
V,D

 , (20)

where D is the gene dimension of the individual dung beetle,
and V represents the number of dung beetles in the population.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3516730

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 01,2025 at 13:33:36 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, DECEMBER 0 8

xtv denotes the position of v-th dung beetle in the t-th iteration,
which is a four-dimension vector that combines the stitching
coefficients, deployment positions, and reception index.

To enhance the convergence while satifying the constraints,
we introduce the fitness function f (·) to evaluate the position
of each dung beetle. The fitness function for this algorithm,
based on the objective function in the previous section, in-
troduces the penalty for constraint violation, which is defined
as

f(xt
v) = P −

∑
q∈Q

yq(ρ
β
qΨ1 + ρlqΨ2), (21)

where Ψ1 and Ψ2 are the penalty values for the violation of
stitching index and model deployment, respectively. ρβq and ρlq
are the coefficients to measure the violation degree, which is
expressed as

ρβq = [1−min(1, (∥βp
q∥+ ∥βs

q∥+ ∥βns
q ∥))]; (22)

ρlq =

{
1, if (12) is fulfilled,
0, otherwise.

(23)

There are four types of dung beetles in the population: male
dung beetles with a number of V1, breeding dung beetles with
a number of V2, foraging dung beetles with a number of V3,
and thief dung beetles with a number of V4. Although each
different type of dung beetle performs distinct behaviors, they
work together as a collaborative whole to intelligently search
for solutions in complex spaces. In the following, we will
introduce these types of dung beetles individually.

1) Male dung beetle: Male dung beetles engage in two
behaviors, rolling balls and dancing, to conduct searches in
local areas. In the search space, each male dung beetle moves
in a specific direction to roll balls. During the rolling process,
the dung beetle updates its position to account for the impact
of light source intensity on its path as

xt+1
i = xtv + ϑεxt−1

v + b∆x, (24)

where ϑ is the natural coefficient assigned -1 or 1, ε ∈ (0, 0.2]
represents the deflection coefficient, and b ∈ (0, 1) is a
constant to denote the influence of light fluctuation. When the
value of the natural coefficient is set to 1, it means that it does
not deviate from the original direction; otherwise, the value is
set to -1. To simulate the uncertainty of the real environment,
this paper uses the probability selection method of λ1 to select
the natural coefficients. To expand the search range of the
proposed algorithm, ∆x is introduced to represent the change
of simulated light intensity, which is expressed as

∆x =
∣∣xt

v − xworst
∣∣ , (25)

where xworst is the position of the dung beetle with the global
worst fitness by (21).

When dung beetles encounter obstacles that prevent them
from rolling in a straight line, they dance and reposition
themselves in order to find a new rolling path. We use the
tangent function to update the position of the dung beetle.
The definition of the dancing behavior’s position update is

xt+1
v = xt

v + tan(ϖ)(xt
v − xt−1

v), (26)

where ϖ is the deflection angle uniformly selected from [0, π],
and when ϖ equals 0, π

2 or π, the position will not be updated.
After determining its new direction, the dung beetle resumes
its rolling ball behavior, with its current location and historical
location information closely influencing its location update.

2) Breeding dung beetle: To ensure the safe growth of their
offspring, the breeding dung beetles, also known as female
dung beetles, roll the dung balls to a safe place and burrow
them. Choosing a suitable egg-laying site is a key step in
the dung beetle spawning process. We propose a boundary
selection strategy to mimic the oviposition area of female
dung beetles. The mathematical expression of this boundary
selection strategy is defined as

Lb∗ = max ((1−R)x∗, Lb) ; (27)

Ub∗ = min ((1 +R)x∗, Ub) , (28)

where x∗ denotes the current local optimal position, Lb∗ and
Ub∗ represent the lower and upper bounds of the spawning
area, respectively. R = 1− t

Tmax
denotes adjustment factor that

changes dynamically as the number of iterations increases, and
Tmax is the threshold of iterations. Lb and Ub represent the
lower and upper bounds of the search space, respectively.

After determining the spawning area, the female dung beetle
will choose a location to lay eggs, and each female dung
beetle produces one egg ball per iteration. The boundaries
of the spawning area are dynamic and mainly determined by
R. Accordingly, the position update of the brood ball is also
dynamic, which is defined as

xt+1
v = x∗ + b1(xtv − Lb∗) + b2(xt

v − Ub∗), (29)

where b1 and b2 are two independent random vectors of size
1 × D, and D represents the dimension of the optimization
problem. The position update algorithm of the brood ball is
presented in Algorithm 1.

Algorithm 1: The updating strategy of breeding dung
beetles
Input: The maximum number of iterations Tmax, the

number of brood balls V3, and current number
of iteration t

Output: The position xt+1
v of the v-th breeding dung

beetle
1 R = 1− t

Tmax
;

2 for i← 1 to V3 do
3 Update the position of the breeding dung beetle

ball according (29);
4 for d← 1 to D do
5 if xv,d > Ub∗ then
6 xv,d ← Ub∗;

7 if xv,d < Lb∗ then
8 xv,d ← Lb∗;

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3516730

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 01,2025 at 13:33:36 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, DECEMBER 0 9

3) Foraging dung beetle: Foraging beetles exhibit the be-
havior of searching for optimal resources by exploring the
search space extensively. They utilize adaptive boundaries to
guide their movement, allowing them to efficiently locate high-
quality solutions. The boundaries are defined as

Lbb = max
(
(1−R)xb, Lb

)
; (30)

Ubb = min
(
(1 +R)xb, Ub

)
, (31)

where Xb represents the global optimal position, and Lbb and
Ubb represent the lower and upper bounds of the optimal
foraging area respectively. Accordingly, the position update
formula of the foraging dung beetle is

xt+1
v = xtv +B1(xtv − Lbb) +B2(xtv − Ubb), (32)

where B1 represents a random number that follows the normal
distribution, and B2 represents a random vector that falls
within the range of (0, 1).

4) Thief dung beetle: There is a special type of individual
called thieves who obtain food by stealing the dung balls of
other individuals. Xb is introduced to point to the position
of the optimal food source, i.e., the potential position of the
optimal solution. The location update formula of the thief dung
beetle is defined as

xt+1
v = Xb + νg

(
|xtv − x∗|+ |xtv −Xb|

)
, (33)

where g is a random vector of size 1 × D that obeys a
normal distribution, and ν is a constant used to adjust the
step size. They dynamically adjust their positions based on
their proximity to the best solutions discovered, improving the
algorithm’s ability to escape local optima and find the global
optimum.

The pseudocodes of the proposed algorithm are shown in
Algorithm 2. A time-slotted manner is utilized in this system,
and the set of service requests {(Zq, Tq, Aq) ,∀q ∈ Q}, max-
imum number of iterations Tmax, and the population of dung
beetle population V are input first. In lines 1-2, the position of
each dung beetle is randomly initialized to ensure that dung
beetles with different behavioral modes can be distinguished,
including male dung beetles, breeding dung beetles, foraging
dung beetles, and thief dung beetles. Then, the positions of
these dung beetles are updated successively. For male dung
beetles, the changes in light intensity are computed by (25),
firstly. Then, the position is updated by (24) in lines 7-13
with consideration of the previous position and simulated light.
For breeding dung beetles, the local optimal lower and upper
bounds, i.e., the spawning area, are obtained by (27) and (28).
Correspondingly, each breeding dung beetle chooses a location
to produce one egg ball by (29) in lines 15-16. Foraging dung
beetles prefer to explore the area of optimal global positioning.
Based on the global optimal position of (30) and (31), the
position of them is updated by (32) in lines 18-19. For thief
dung beetles, they are influenced by both the global and local
boundaries, which is updated by (33) in lines 21. After each
dung beetle’s position is updated, the position with a higher
fitness value replaces the previous one. Finally, the procedure
stops if the iteration exceeds the maximum value Tmax or Xb

remains unchanged in succession.

Algorithm 2: DBSSO algorithm
Input: The set of user requirements

{(Zq, Tq, Aq) ,∀q ∈ Q}, the maximum number
of iterations Tmax, the population of dung
beetle population V

Output: Stitch coefficient matrix β, model deployment
matrix collection L, reception index matrix
collection Y

1 Initialize current iteration index t← 1 ;
2 Initialize dung beetle population Xt;
3 while t ≤ Tmax do
4 for v ← 1 to V do
5 Set ϑ← 1;
6 if v ≤ V1 then
7 if rand(1) < λ0 then
8 if rand(1) ≤ λ1 then
9 Set ϑ← −1;

10 Update the position of male dung beetle
by (24) ;

11 else
12 Randomly select ϖ from [0, π] ;
13 Update the position of male dung beetle

by (26) ;

14 if V1 < v ≤ V1 + V2 then
15 Update the spawning area by (27) and (27)

;
16 Update the position of breeding dung beetle

by (29) ;

17 if V1 + V2 < v ≤ V − V4 then
18 Update the foraging area by (30) and (31);
19 Update the position of foraging dung beetle

by (32) ;

20 if V − V4 < v ≤ V then
21 Update the position of thief dung beetle by

(33) ;

22 if the newly formed dung beetle is better than
before then

23 Update the location of v-th dung beetle;

24 t = t+ 1;

VII. PERFORMANCE EVALUATION

This section demonstrates the simulations to evaluate the
performance of the proposed algorithm in terms of conver-
gence, user satisfaction ratio, total user satisfaction value, and
average resource consumption. Drawing from the configura-
tion in [40], [13], and [44], the simulations are conducted in
a four-layer network, where realistic inference data of DeiT-
Ti, DeiT-S and DeiTB based on ImageNet-22K pre-training
is utilized. Considering the characteristics of the AI-based
6G network architecture proposed in this paper, we have
established the corresponding network architecture simulation
parameters, as detailed in Table II. The simulation parameter

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3516730

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 01,2025 at 13:33:36 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, DECEMBER 0 10

TABLE II: SCENARIO PARAMETER SETTINGS

Parameters Value
Transmission rate to the cloud layer
R4

125× 109(bytes/s)

Number of network nodes in cloud
layer N4

1000

Computing capacity of each node in
cloud layer C4

200 (Flops (G))

Transmission rate from the second
layer to the third layer R3

12.5× 109(bytes/s)

Number of network nodes in the
third layer N3

20

Computing capacity of each node in
the third layer C3

80 (Flops (G))

Number of network nodes in the sec-
ond layer N2

60

Transmission rate from the first layer
to the second layer R2

6.25× 109(bytes/s)

Computing capacity of eahc node in
the second layer C2

20 (Flops (G))

Number of network nodes in the first
layer N1

100

Transmission rate from users to the
first layer R1

1.25× 109(bytes/s)

Computing capacity of eahc node in
the first layer C1

5 (Flops (G))

Maximum tolerable delay Tq [1, 200] (ms)
Desired model performance Aq [60%, 82%]
Desired data volume Zq

[
1× 105, 5.2× 107

]
(bytes)

TABLE III: ALGORITHM PARAMETER SETTINGS

Algorithm parameters Value
Maximum number of iterations Tmax 100
Total dung beetle population V 300
Number of male dung beetles V1 60
Number of breeding dung beetles V2 60
Number of foraging dung beetles V3 70
Number of thief dung beetles V4 110
Deflection coefficient of dung beetle rolling ball behavior ε 0.1
Dung beetle rolling ball behavior step coefficient b 0.3
Dung beetle stealing behavior step coefficient ν 0.5

settings take into account the trend of a decreasing number
of network nodes with increasing network layers, while the
computational capacity of individual network nodes corre-
spondingly increases. Additionally, this paper assumes that
the network nodes located in the cloud layer have sufficient
computational capacity but suffer transmission delay. For the
proposed DBSSO algorithm, the deflection coefficient ε of the
dung beetle rolling ball behavior, the step coefficient b of the
dung beetle rolling ball behavior, and the step coefficient ν of
the dung beetle stealing behavior were determined based on
the empirical values. The specific parameters of the algorithm
are shown in Table III. To examine the performance of the
proposed algorithm, three benchmarks are utilized: genetic
algorithm (GA) [45], [46], delay optimal algorithm (DOA)
[44], and random benchmark (RB) [24]. The simulation is
carried out on a computer with 2.10 GHz Intel Core i7-12700F,
16GB RAM, and NVIDIA 2060Ti.

We mainly examined two scenarios: intelligence-native
cloud network architecture (Cloud AI) and intelligence-native
MEC architecture (MEC AI), to evaluate the performance of
the proposed 6G Network AI. Among them, the parameter
settings of Cloud AI are consistent with the cloud layer param-
eters in Table II, while the parameters of MEC AI combine the

0 10 20 30 40 50 60 70 80 90 100
Iteration

1500.0

1750.0

2000.0

2250.0

2500.0

2750.0

3000.0

3250.0

3500.0

To
ta

l S
ys

te
m

 P
ro

fit

DBSSO
GA
DOA
RB

Fig. 2: Convergence trend of the total system profit with the
training iteration.

parameter settings of the first-layer domain network elements
and cloud layer in Table II.

Fig. 2 evaluates the convergence of each algorithm with
45 user requests. The proposed approach outperforms bench-
marks in both convergence iterations and satisfaction value.
Initially, all algorithms start at a satisfaction value of 38.8 due
to random initialization. The proposed algorithm excels by
maintaining population diversity, balancing local and global
searches, and avoiding local optima. The satisfaction value
of that reaches nearly 85 at 10-th iteration and converges,
while the satisfaction values of GA and DOA continue to
converge until nearly 72 on the 50-th and nearly 53 on the 30-
th iterations, separately. In contrast, RB maintains the lowest
total system satisfaction value, at nearly 38.

The plot in Fig. 3(a) depicts the comparison of the satisfac-
tion value with the varied number of requests. The DBSSO
algorithm demonstrates a consistently decreasing trend in
satisfaction value as the number of requests increases, outper-
forming the benchmarks across most request levels. Specif-
ically, at 5 requests, DBSSO and GA achieve a satisfaction
value of approximately 100, compared to DOA at 77 and RB at
55. We witness a deeper decline in the satisfaction value values
of GA, DOA, and RB compared to DBSSO as the number of
requests increases to 15. As the number of requests reaches
75, DBSSO’s satisfaction value achieves about 81, while GA,
DOA, and RB achieve around 68, 50, and 36, respectively.
Similarly, Fig. 3(b) plots the user satisfaction ratio against
the number of requests. DBSSO consistently maintains the
highest user satisfaction ratio across all request levels, which
outperforms the best benchmark by nearly 20%. The clear
separations in satisfaction value and user satisfaction ratio
indicate that DBSSO is more effective in generating higher
satisfaction values and fulfilling users with an increasing num-
ber of requests. Intuitively, satisfaction value should seemingly
increase with the number of services. However, in this paper,
we also measure user service satisfaction and cost within
the definition of average satisfaction value. Therefore, the
satisfaction value in this simulation decreases as the number
of services increases. Although the trends of both appear

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3516730

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 01,2025 at 13:33:36 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, DECEMBER 0 11

5 15 25 35 45 55 65 75
Number of Requests

40

48

56

64

72

80

88

96
Av

er
ag

e
Sa

tis
fa

ct
io

n
Va

lu
e

DBSSO
GA
DOA
RB

(a) Total system satisfaction value versus the number of requests.

5 15 25 35 45 55 65 75
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

U
se

r S
at

is
fa

ct
io

n
Ra

tio

DBSSO
GA
DOA
RB

(b) User satisfaction ratio versus the number of requests.

Fig. 3: Algorithm performance under different number of requests.

0 0.2 0.4 0.6 0.8 1

Service Type Ratio

0

20

40

60

80

Av
er

ag
e

Sa
tis

fa
ct

io
n

Va
lu

e

DBSSO
GA
DOA
RB

(a) Total system satisfaction value versus the service type ratio.

0 0.2 0.4 0.6 0.8 1

Service Type Ratio

0.0

0.2

0.4

0.6

0.8

U
se

r S
at

is
fa

ct
io

n
Ra

tio

DBSSO
GA
DOA
RB

(b) User satisfaction ratio versus the service type ratio.

Fig. 4: Algorithm performance under different ratios of service type.

similar, it does not imply that satisfaction value iDespite the
similarities between the trends, the user service acceptance
rate does not dominate the satisfaction value. nce rate remains
at 100%, yet the average satisfaction value decreases. This is
because the increase in the number of users leads to resource
contention, thereby reducing service performance.

The simulation results shown in Fig. 4 detail the perfor-
mance of different algorithms under two service types: high-
latency low-inference-performance tasks and low-latency high-
inference-performance tasks. The horizontal axis represents
the proportion of low-latency and high-inference-performance
tasks. The figures demonstrate that the proposed approach
outperforms each benchmark under varied service type ratios.
As the ratio of low-latency high-inference-performance tasks
increases, both the satisfaction value and the user satisfaction
ratio decrease. This trend highlights the challenges in main-
taining user satisfaction when computation resources on the
edge are insufficient to meet the increased demand for low-
latency services. The average satisfaction value, reflecting the
overall service quality and resource cost balance, and the user

satisfaction ratio, indicating the percentage of users whose
expectations are met, both show a decline due to the limited
computational capabilities available.

Figs. 5(a) and 5(b) present a comparison of the satisfaction
value and user satisfaction ratio under two different stitching
mechanisms: the unable-reusing mechanism-based DBSSO
(UM-DBSSO) and the fair equal scheduling-based DBSSO
(FES-DBSSO). Observations reveal a gradual decline in the
performance of the three service strategies as the number of
users increases. However, the stitching mechanism used has
the slowest performance degradation rate. Although the FES-
DBSSO performs similarly to DBSSO when the number of
requests equals 5, its performance sharply declines, accounting
for three quarters and half of DBSSO’s satisfaction value
and user satisfaction ratio. UM-DBSSO’s performance is the
lowest in both satisfaction value and user satisfaction ratio.
Fig. 5(c) compares DBSSO and UM-DBSSO’s performance
in terms of average resource consumption and reuse. It can be
seen that the resource consumption per completed service is
significantly reduced by 15% to 20% as the number of services

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3516730

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 01,2025 at 13:33:36 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, DECEMBER 0 12

5 15 25 35 45 55 65 75
Number of Requests

40

48

56

64

72

80

88

96

A
ve

ra
g

e
Sa

ti
sf

ac
ti

o
n

 V
al

u
e

DBSSO
UM-DBSSO
FES-DBSSO

(a) Total system satisfaction value versus the
number of requests.

8 16 24 32 40 48 56 64 72
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

U
se

r
Sa

ti
sf

ac
ti

o
n

 R
at

io

DBSSO
UM-DBSSO
FES-DBSSO

(b) User satisfaction ratio versus the number of
requests.

5 10 15 20 25 30 35 40 45 50 55 60 65 70
Number of Requests

0

2

4

6

8

10

12

14

Av
er

ag
e

Re
so

ur
ce

 C
on

su
m

pt
ion

DBSSO
UM-DBSSO
DBSSO Resource Reuse Ratio

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
so

ur
ce

 R
eu

se
 R

at
io

(c) Comparison between with model reusing and
without reusing. The bars correspond to the resource
consumption per request while the lines correspond to
the resource reusing ratio.

Fig. 5: Performance of DBSSO algorithm under different stitching mechanism.

5 15 25 35 45 55 65 75
Number of Requests

32

40

48

56

64

72

80

88

96

A
ve

ra
ge

 S
at

is
fa

ct
io

n
Va

lu
e

6G Network AI
Cloud AI
MEC AI

(a) Total system satisfaction value versus the service type ratio.

8 16 24 32 40 48 56 64 72
Number of Requests

0.2

0.4

0.6

0.8

1.0

U
se

r
Sa

tis
fa

ct
io

n
Ra

tio

6G Network AI
Cloud AI
MEC AI

(b) User satisfaction ratio versus the service type ratio.

Fig. 6: Performance of DBSSO algorithm under different network architecture.

increases from 30 to 70. Although the resource reusing is
close to 0% under 5 services, the reusing ratio rises rapidly
as the number approaches 30. As the number of services
increases, the resource reusing ratio continues to rise. The
combination of stitching mechanisms with model reutilization
allows the system to make full use of deployed AI models to
reuse to serve users with different requirements. Therefore,
the utilization of stitching mechanisms and model reusing
promotes resource utilization and reduces resource costs.

Fig. 6 compares three architectures—6G Network AI, Cloud
AI, and MEC AI—to demonstrate their impact on perfor-
mance. Figs. 6(a) and 6(b) evaluate the satisfaction value and
user satisfaction ratio across these network architectures as
the number of users increases. All three architectures show a
downward trend in these metrics as the number of users grows,
albeit to varying degrees. When the number of requests is less
than 10, the satisfaction values of 6G Network AI and MEC AI
are equivalent and significantly higher than that of Cloud AI.
As the number of requests continues to increase, a noticeable
gap emerges, with 6G Network AI outperforming the others.
This advantage stems from the combination of diverse network
resources and the ability to handle varying user demands

effectively. Cloud AI exhibits the lowest performance due
to the high latency and transmission costs associated with
centralized processing. In contrast, 6G Network AI employs
a multi-layered approach, combining cloud, edge, and device-
level resources, allowing for dynamic resource allocation and
optimal service deployment. This integrated design leads to
lower latency, enhanced adaptability, and overall better ef-
ficiency, thus enabling 6G Network AI to deliver superior
performance compared to the other architectures.

VIII. CONCLUSION
In this paper, we introduced an AI service provision scheme

for multi-layer heterogeneous network. Firstly, we introduce
a network architecture based on native intelligence, leverag-
ing the stitching technique to enhance AI model usability.
Considering the service requirements of different users and
the resource limitations, an MINLP problem is proposed to
maximize user satisfaction value. Then this paper proposes
a heuristic algorithm, DBSSO to jointly optimize the model
stitching coefficient and service deployment. We designed a
series of simulation experiments to verify the effectiveness of
the proposed algorithm and architecture in maximizing the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3516730

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 01,2025 at 13:33:36 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, DECEMBER 0 13

satisfaction value and the satisfaction ratio. The results of
the simulation experiment clearly show the advantages of this
solution in improving service performance, and confirm its
huge potential in 6G network on-demand service application
scenarios. Overall, the on-demand service solution proposed
in this article provides a general, innovative idea for realizing
flexible and personalized services in 6G networks in the future.
In future research, we will introduce user portrait technology
and study the protocol interaction with existing protocol in
core network. Then, the theoretical performance of proposed
architecture is analyzed.

REFERENCES

[1] Statista. (2023) Number of Internet of Things (IoT) Connected Devices
Worldwide from 2019 to 2023, with Forecasts from 2022 to 2030.

[2] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li, “Gearing
Resource-Poor Mobile Devices with Powerful Clouds: Architectures,
Challenges, and Applications,” IEEE Wireless communications, vol. 20,
no. 3, pp. 14–22, 2013.

[3] C. Zhou, J. Gao, M. Li, N. Cheng, X. Shen, and W. Zhuang, “Digital
Twin-based 3D Map Management for Edge-assisted Device Pose Track-
ing in Mobile AR,” IEEE Internet of Things Journal, vol. 11, no. 10,
pp. 17 812–17 826, 2024.

[4] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko et al., “Highly
Accurate Protein Structure Prediction with AlphaFold,” Nature, vol. 596,
no. 7873, pp. 583–589, 2021.

[5] R. High, “The Era of Cognitive Systems: An Inside Look at IBM Watson
and How It Works,” IBM Corporation, Redbooks, vol. 1, p. 16, 2012.

[6] P. Sun, Y. Jiang, S. Chen, S. Zhang, B. Peng, P. Luo, and Z. Yuan,
“Autoregressive Model Beats Diffusion: Llama for Scalable Image
Generation,” arXiv preprint arXiv:2406.06525, 2024.

[7] H. Zhang, A. Ning, R. B. Prabhakar, and D. Wentzlaff, “LLMCom-
pass: Enabling Efficient Hardware Design for Large Language Model
Inference,” in 2024 ACM/IEEE Annual International Symposium on
Computer Architecture (ISCA), 2024, pp. 1080–1096.

[8] C. Chen, Z. Liao, Y. Ju, C. He, K. Yu, and S. Wan, “Hierar-
chical Domain-Based Multicontroller Deployment Strategy in SDN-
Enabled Space-Air-Ground Integrated Network,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 58, no. 6, pp. 4864–4879, 2022.

[9] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A Survey
on Mobile Edge Computing: The Communication Perspective,” IEEE
Communications Surveys and Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[10] L. Wang, X. Wu, Y. Zhang, X. Zhang, L. Xu, Z. Wu, and A. Fei,
“DeepAdaIn-Net: Deep Adaptive Device-Edge Collaborative Inference
for Augmented Reality,” IEEE Journal of Selected Topics in Signal
Processing, vol. 17, no. 5, pp. 1052–1063, 2023.

[11] H. Peng, Z. Zhang, Y. Liu, Z. Su, T. H. Luan, and N. Cheng, “Se-
mantic Communication in Non-Terrestrial Networks: A Future-Ready
Paradigm,” IEEE Network, vol. 38, no. 4, pp. 119–127, 2024.

[12] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva,
F. Tufvesson, A. Benjebbour, and G. Wunder, “5G: A Tutorial Overview
of Standards, Trials, Challenges, Deployment, and Practice,” IEEE
Journal on Selected Areas in Communications, vol. 35, no. 6, pp. 1201–
1221, 2017.

[13] Y. Yang, M. Ma, H. Wu, Q. Yu, X. You, J. Wu, C. Peng, T. S. P.
Yum, A. H. Aghvami, G. Y. Li, J. Wang, G. Liu, P. Gao et al., “6G
Network AI Architecture for Everyone-Centric Customized Services,”
IEEE Network, vol. 37, no. 5, pp. 71–80, 2023.

[14] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“How Should I Slice My Network? A Multi-Service Empirical
Evaluation of Resource Sharing Efficiency,” in 2018 ACM Annual
International Conference on Mobile Computing and Networking
(MobiCom), 2018, p. 191–206.

[15] C. Zhou, J. Gao, M. Li, X. Shen, W. Zhuang, X. Li, and W. Shi,
“AI-Assisted Slicing-Based Resource Management for Two-Tier Radio
Access Networks,” IEEE Transactions on Cognitive Communications
and Networking, vol. 9, no. 6, pp. 1691–1706, 2023.

[16] X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic
Network Virtualization and Pervasive Network Intelligence for 6G,”
IEEE Communications Surveys and Tutorials, vol. 24, no. 1, pp. 1–30,
2022.

[17] M. Li, D. Yin, H. Qiu, and B. Bai, “A Systematic Review of AI
Technology-based Service Encounters: Implications for Hospitality and
Tourism Operations,” International Journal of Hospitality Management,
vol. 95, p. 102930, 2021.

[18] Y. Lin, C. Wu, J. Wu, L. Zhong, X. Chen, and Y. Ji, “Meta-Networking:
Beyond the Shannon Limit with Multi-Faceted Information,” IEEE
Network, vol. 37, no. 4, pp. 256–264, 2023.

[19] M.-H. Huang and R. T. Rust, “Artificial Intelligence in Service,” Journal
of Service Research, vol. 21, no. 2, pp. 155–172, 2018.

[20] W. Wu, C. Zhou, M. Li, H. Wu, H. Zhou, N. Zhang, X. Shen,
and W. Zhuang, “AI-Native Network Slicing for 6G Networks,” IEEE
Wireless Communications, vol. 29, no. 1, pp. 96–103, 2022.

[21] L. Wang, L. Li, L. Xu, X. Peng, and A. Fei, “Failure-Resilient Dis-
tributed Inference With Model Compression Over Heterogeneous Edge
Devices,” IEEE Transactions on Mobile Computing, vol. 23, no. 12, pp.
12 680–12 692, 2024.

[22] M. Li, J. Gao, C. Zhou, X. Shen, and W. Zhuang, “Slicing-Based
Artificial Intelligence Service Provisioning on The Network Edge:
Balancing AI Service Performance and Resource Consumption of Data
Management,” IEEE Vehicular Technology Magazine, vol. 16, no. 4, pp.
16–26, 2021.

[23] W. Wu, P. Yang, W. Zhang, C. Zhou, and X. Shen, “Accuracy-
Guaranteed Collaborative DNN Inference in Industrial IoT via Deep
Reinforcement Learning,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 7, pp. 4988–4998, 2021.

[24] W. He, S. Guo, S. Guo, X. Qiu, and F. Qi, “Joint DNN Partition
Deployment and Resource Allocation for Delay-Sensitive Deep Learning
Inference in IoT,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.
9241–9254, 2020.

[25] W. Fan, Z. Chen, Z. Hao, Y. Su, F. Wu, B. Tang, and Y. Liu, “DNN
Deployment, Task Offloading, and Resource Allocation for Joint Task
Inference in IIoT,” IEEE Transactions on Industrial Informatics, vol. 19,
no. 2, pp. 1634–1646, 2023.

[26] G. Manogaran, T. Baabdullah, D. B. Rawat, and P. M. Shakeel, “AI-
Assisted Service Virtualization and Flow Management Framework for
6G-Enabled Cloud-Software-Defined Network-Based IoT,” IEEE Inter-
net of Things Journal, vol. 9, no. 16, pp. 14 644–14 654, 2022.

[27] Y. Hu, Q. Li, Y. Chai, D. Wu, L. Lu, N. Shi, Y. Teng, and Y. Zhang,
“AI Service Deployment and Resource Allocation Optimization Based
on Human-Like Networking Architecture,” IEEE Internet of Things
Journal, vol. 14, no. 8, 2024.

[28] N. Cheng, W. Xu, W. Shi, Y. Zhou, N. Lu, H. Zhou, and X. Shen, “Air-
Ground Integrated Mobile Edge Networks: Architecture, Challenges, and
Opportunities,” IEEE Communications Magazine, vol. 56, no. 8, pp. 26–
32, 2018.

[29] Z. Yin, N. Cheng, Y. Hui, W. Wang, L. Zhao, K. Aldubaikhy,
and A. Alqasir, “Multi-Domain Resource Multiplexing Based Secure
Transmission for Satellite-Assisted IoT: AO-SCA Approach,” IEEE
Transactions on Wireless Communications, 2023, early access, DOI:
10.1109/TWC.2023.3250227.

[30] F. Tang, C. Wen, L. Luo, M. Zhao, and N. Kato, “Blockchain-Based
Trusted Traffic Offloading in Space-Air-Ground Integrated Networks
(SAGIN): A Federated Reinforcement Learning Approach,” IEEE Jour-
nal on Selected Areas in Communications, vol. 40, no. 12, pp. 3501–
3516, 2022.

[31] Z. Liu, L. Wan, Y. Ma, J. Guo, S. Guo, J. Ma, and J. Ma, “Establishing
Trustworthy and Privacy-Preserving SAGIVNs in 6G: Architectures,
Requirements, and Solutions,” IEEE Network, vol. 38, no. April, pp.
141–147, 2023.

[32] J. He, N. Cheng, Z. Yin, H. Zhou, C. Zhou, K. Aldubaikhy, A. Alqasir,
and X. Shen, “Load-Aware Network Resource Orchestration in LEO
Satellite Network: A GAT-Based Approach,” IEEE Internet of Things
Journal, vol. 11, no. 9, pp. 15 969 – 15 984, 2024.

[33] S. Yu, X. Gong, Q. Shi, X. Wang, and X. Chen, “EC-SAGINs:
Edge-Computing-Enhanced Space-Air-Ground-Integrated Networks for
Internet of Vehicles,” IEEE Internet of Things Journal, vol. 9, no. 8, pp.
5742–5754, 2022.

[34] C. Huang, G. Chen, S. Member, P. Xiao, and S. Member, “Joint
Offloading and Resource Allocation for Hybrid Cloud and Edge Com-
puting in SAGINs : A Decision Assisted Hybrid Action Space Deep
Reinforcement Learning Approach,” IEEE Journal on Selected Areas in
Communications, vol. PP, p. 1, 2024.

[35] Q. Chen, W. Meng, T. Q. Quek, and S. Chen, “Multi-Tier Hybrid
Offloading for Computation-Aware IoT Applications in Civil Aircraft-
Augmented SAGIN,” IEEE Journal on Selected Areas in Communica-
tions, vol. 41, no. 2, pp. 399–417, 2023.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3516730

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 01,2025 at 13:33:36 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, DECEMBER 0 14

[36] H. Zhang, R. Liu, A. Kaushik, and X. Gao, “Satellite Edge Computing
with Collaborative Computation Offloading: An Intelligent Deep Deter-
ministic Policy Gradient Approach,” IEEE Internet of Things Journal,
vol. 10, no. 10, pp. 9092–9107, 2023.

[37] C. Zhou, J. Gao, M. Li, X. Shen, and W. Zhuang, “Digital Twin-
empowered Network Planning for Multi-tier Computing,” Journal of
Communications and Information Networks, vol. 7, no. 3, pp. 221–238,
2022.

[38] H. Zhang, S. Shao, M. Tao, X. Bi, and K. B. Letaief, “Deep Learning-
Enabled Semantic Communication Systems With Task-Unaware Trans-
mitter and Dynamic Data,” IEEE Journal on Selected Areas in Commu-
nications, vol. 41, no. 1, pp. 170–185, 2023.

[39] Y. Bo, Y. Duan, S. Shao, and M. Tao, “Joint Coding-Modulation for
Digital Semantic Communications via Variational Autoencoder,” IEEE
Transactions on Communications, vol. PP, p. 1, 2024.

[40] Z. Pan, J. Cai, and B. Zhuang, “Stitchable Neural Networks,” in 2023
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), 2023, pp. 16 102–16 112.

[41] W. Wu, M. Li, K. Qu, C. Zhou, X. Shen, W. Zhuang, X. Li, and W. Shi,
“Split Learning Over Wireless Networks: Parallel Design and Resource
Management,” IEEE Journal on Selected Areas in Communications,
vol. 41, no. 4, pp. 1051–1066, 2023.

[42] J. Li, W. Shi, H. Wu, S. Zhang, and X. Shen, “Cost-Aware Dynamic
SFC Mapping and Scheduling in SDN/NFV-Enabled Space-Air-Ground
Integrated Networks for Internet of Vehicles,” IEEE Internet of Things
Journal, vol. 9, no. 8, pp. 5824–5838, 2021.

[43] J. Xue and B. Shen, “Dung Beetle Optimizer: A New Meta-heuristic
Algorithm for Global Optimization,” The Journal of Supercomputing,
vol. 79, no. 7, pp. 7305–7336, 2023.

[44] G. Wang, S. Zhou, S. Zhang, Z. Niu, and X. Shen, “SFC-Based
Service Provisioning for Reconfigurable Space-Air-Ground Integrated
Networks,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 7, pp. 1478–1489, 2020.

[45] M. Lopuhaä-Zwakenberg, C. E. Budde, and M. Stoelinga, “Efficient
and Generic Algorithms for Quantitative Attack Tree Analysis,” IEEE
Transactions on Dependable and Secure Computing, vol. 20, no. 5, pp.
4169–4187, 2023.

[46] N. Howgrave-Graham and A. Joux, “New Generic Algorithms for Hard
Knapsacks,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2010, pp. 235–
256.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3516730

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 01,2025 at 13:33:36 UTC from IEEE Xplore. Restrictions apply.

