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Abstract—The Internet of Vehicles (IoV) can support applica-
tions in connected autonomous vehicles (CAVs), the implementa-
tion of which can effectively improve traffic efficiency. However,
safety-related CAV applications have very strict requirements on
the reliability and latency of each packet, which is difficult to
achieve due to limited resources and the high dynamics of CAVs.
In this paper, we investigate communication resource scheduling
for remote autonomous driving (AD) to improve the performance
of the remote control system when network resources are con-
strained. Specifically, we introduce a novel performance metric,
i.e., value of information (VoI), to capture how sending a packet
will affect the performance of CAV driving safety and efficiency,
i.e., the value of the packet on the considered CAV system. The
formulation of VoI is derived using the Lyapunov optimization
method, and the lower-bound for the performance of the AD
system with a VoI-based scheduling strategy is analyzed. Then, a
communication resource scheduling approach is proposed based
on the VoI of each packet. Simulation results demonstrate that the
proposed VoI-based resource scheduling approach is capable of
accurately assessing the impact of information transfer on system
performance, while ensuring the CAV’s safety and enhancing
traffic efficiency.

Index Terms—Connected autonomous vehicles, Internet of
Vehicles, resource scheduling, value of information.

I. INTRODUCTION

THE emergence of the Internet of Vehicles (IoV) and
autonomous driving (AD) technologies have transformed

modern transportation into a complex system that integrates
perception, communication, computing, and control [1]. Due
to the limitations of vehicle sensing performance, AD ne-
cessitates the support of IoV, particularly in scenarios with
multiple vehicles and intricate traffic conditions [2]–[5]. IoV
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is the technology that empowers vehicles for information
exchange and environment perception. Participants cover ve-
hicles, infrastructure, mobile devices carried by pedestrians,
and remote cloud servers, supporting communication from
vehicle-to-everything (V2X) [6]–[11]. In IoV, vehicles can
exchange information with roadside units (RSU) or remote
traffic management centers to gain the additional status of
other vehicles and road conditions [6], which greatly improves
connected and autonomous vehicle (CAV) sensing ability and,
therefore, AD performance, becoming a key component in
enhancing the safety and efficiency of CAVs.

While the benefits are attractive, AD has stringent network
performance requirements, especially for safety-related appli-
cations. According to 5G V2X standardization, the require-
ments of V2X communications to support CAV can be as
strict as 99.99999% reliability and 10 ms latency [12]. The
loss or timeout of packets containing critical information can
severely affect the performance of AD. However, meeting
such stringent requirements for each data packet poses a
significant challenge to the network, since the amount of
required resources increases exponentially when the packet
reliability and latency requirements become more stringent
[13], [14]. The situation of resource shortage gets worse when
massive devices send packets simultaneously in the network.
Even with the off-the-shelf 5G networks, it still cannot be
guaranteed such stringent transmission requirements in CAV.
Therefore, this raises an important research issue which is to
guarantee the CAV system requirements, i.e., driving safety
and efficiency, under limited wireless resources.

This issue has been extensively studied by many scholars.
One solution is to set priority for vehicle packets. ProSe
Per-Packet Priority (PPPP) is a concept proposed by the
standardization organization 3GPP [15]. PPPP mainly empha-
sizes the priority ranking in sending packets. Based on this
idea, some works have attempted to set priority for vehicle
packets [16]–[19], which improve the throughput and spectrum
efficiency of CAV. However, such approaches only set priority
for differentiating data packets of different task types, such as
safety-related packets and non-safety-related packets. Vehicle
status information in remote driving, as a type of safety-
related information, still has different requirements among
different vehicles. There is another way to schedule packets
of the same type of task. Kaul et al. [20] first introduced
a metric called the age of information (AoI). This metric
is defined as the time elapsed since the generation time of
the last received packet. AoI characterizes the freshness of
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information. Much of the subsequent work inherited the idea
of AoI [21]–[29], minimizing AoI to make a balance between
maximum average throughput and minimum average latency.
However, merely evaluating the long-term average throughput
and latency performance is often inadequate for CAV tasks,
since the loss of a crucial packet could result in severe safety
issues, even if it does not violate the time-average performance
[30].

The above approach is more concerned with meeting spe-
cific average communication latency or reliability require-
ments. In addition, the performance of the task should be also
considered. Specifically, we guarantee the reliable and low-
latency transmission of only those packets that have a high
impact on the task performance. In such task-oriented resource
scheduling, an extra metric reflecting the impact of packet
transmission on task performance is value of information
(VoI). Differing from AoI which reflects network KPIs, VoI
represents a more abstract concept. As described in [31],
the evaluation of VoI is highly task-dependent, making it
challenging to discuss VoI in isolation from specific tasks. In a
broad sense, VoI can be defined as the benefits decision-makers
gain through acquiring particular pieces of information. Recent
discussions on VoI are mostly anchored in specific systems,
such as state update systems, wireless sensor networks (WSN),
and others [32]–[42].

Evaluating the VoI of a packet is a challenging task due
to the following two reasons. First, the VoI is required to
evaluate timely, especially in delay-sensitive tasks. However,
the computational capabilities of traditional network nodes are
insufficient to calculate the VoI of a flow of data packets in
a low latency manner. Second, the evaluation of VoI depends
heavily on the task to which the transmitted data is applied,
and therefore expert knowledge related to the task scenario
is required. Evaluating VoI in connected autonomous driving
systems is particularly challenging due to frequent information
generation and the strict requirements to ensure safety in AD
tasks [4].

In this paper, we aim to devise a strategy for scheduling
packets for CAVs to meet the stringent requirements of AD
under limited communication resources. To achieve this, the
model predictive control (MPC) algorithms are employed to
control the vehicle in AD tasks. CAVs communicate with the
MPC controller in the RSU to acquire reference paths and
report their status by vehicle-to-infrastructure (V2I) commu-
nications. The RSU determines which vehicles can transmit
packets at a given time. The objective is to minimize the
cost of AD, which represents a trade-off between performance
and expenditure. To tackle this problem, a novel framework
is developed for evaluating the VoI of vehicle packets in AD
tasks. In this framework, VoI is defined as the expected benefit
of transmitting packets, and to evaluate this benefit, we ana-
lyze the relationship between system costs and transmission
decisions. Then, the expected transmission benefit (i.e., VoI) is
evaluated using the Lyapunov method. With the obtained VoI,
we convert the cost minimization problem into a VoI maxi-
mization problem and develop a packet-level communication
resource scheduling strategy named the VoI strategy, which is
implemented in both centralized and distributed networks. The

main contributions of this paper are summarized as follows.
1) We present a framework for evaluating VoI. The frame-

work can evaluate the potential impact of vehicle packet
content on AD performance. VoI is sensitively responsive
to safety hazards associated with AD and is simple to
calculate. And then, we analyze the long-term perfor-
mance of CAV using the Lyapunov optimization method
and obtain an approximate expression for the long-term
VoI. Adjusting the long-term VoI can trade off between
control and communication costs over a long time scale.

2) We design a novel VoI-based communication resource
scheduling method, and the communication strategy
based on this method is named the VoI strategy for
short. Such a method lets those packets whose values
are low are not transmitted, and therefore the limited
communication resources are more efficiently utilized.
Then, we derive an upper bound on the average cost using
the proposed method theoretically. For distributed com-
munication systems, an improved Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA) strategy is
proposed.

3) Extensive simulations are conducted. Simulation results
show that the VoI-based communication strategy can
better cope with unexpected situations in the AD task.
In both the path-tracing task and the more complex inter-
section scenarios, the VoI-based communication strategy
achieves better performance compared to the AoI-based
communication strategy, especially when dealing with
extreme conditions, and the VoI strategy ensures the
safety of AD.

The remainder of this paper is organized as follows. We
first discuss related work in Section II. The system model
is described in Section III. In Section IV, the VoI in the
system is analyzed from a cost perspective. Section V presents
centralized and distributed transmission strategies based on
VoI. Simulation and analysis are given in Section VI. This
paper is concluded in Section VII.

II. RELATED WORK

A. Resource Scheduling in IoV

Due to the complexity of AD scenarios, the design of
resource allocation algorithms necessitates a holistic consid-
eration of various requirements, including communication,
perception, control, computation, and more, to assist in the
execution of AD tasks. Recent research efforts have pre-
dominantly focused on optimizing communication network
metrics to meet the demands of perception, computation, and
control tasks. For instance, in [43], the authors investigate
how to enhance the safety and platoon accuracy of forma-
tion driving by minimizing queue delays. [44] addresses the
provision of highly reliable and low-latency transmission for
platoon driving, mitigating queue delays resulting from mem-
ber dynamics during formation travel. [45] introduces artificial
intelligence algorithms to design adaptive data transmission
and computation optimization schemes, aiming to reduce the
long-term energy consumption of autonomous driving systems
while ensuring an average queue delay. In [46], the focus
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shifts towards improving V2I communication reliability and
throughput to enhance the control performance of formation
driving.

The aforementioned works primarily optimize V2X net-
works from various metrics, such as latency, reliability, and
throughput, to meet the requirements of autonomous driving
tasks by enhancing network performance. In contrast, our
approach diverges in that it does not explore network per-
formance improvement; rather, we focus on the evaluation of
data’s value of information. This evaluation helps eliminate
low-value information to reduce network loads, thereby meet-
ing the demands of AD tasks.

B. Value of Information

The study of VoI begins with the work of analyzing the
influence of information content on decision-makers in [32].
Recent work on VoI or similar concepts is generally based on
two forms. One is the extension of research based on AoI; the
other focuses on the direct or indirect impact of information
on specific system efficiency.

Studies based on nonlinear AoI are concentrated in WSN
and status update systems. In underwater wireless sensor
networks (UWSN), researchers initially set a subjective value
for the data packet and then define a decay model, which
is defined as the negative exponential form of AoI, and VoI
is defined as the product of subjective value and decay. The
aim is to describe the change of VoI during the process of
information transmission [33], [34]. These studies enhance the
efficiency of UWSN. In the status update system, [35] uses
the Update Delay Cost (CoUD) metric to describe the cost of
using outdated information, CoUD is a nonlinear function of
AoI. The Value of Update Information (VoIU) is defined as the
proportional function of CoUD, which reflects the decrease in
CoUD when the update is received. The work [36] based on
similar ideas, studied various queuing rules based on VoI in the
status update system. Zhou et al. [37] defines a metric called
Urgency of Information (UoI), which is defined as the product
of status error and AoI nonlinear functions, measuring the
nonlinear change of the importance of state information over
time, which is related to the non-uniform context dependence
of state information.

Research focusing on the impact of information on system
efficiency is relatively scattered. Chen et al. [38] proposed a
method based on information entropy to determine VoI in the
6G massive Internet of Things. This method helps to decide
whether to transmit data and reduce network burden, which
is particularly important for the Internet of Things because
it also faces the challenge of limited network resources.
In the network control system, the VoI of the data packet
transmitted to the controller can be evaluated by measuring
the error of the sensor, which can correspondingly balance
the control cost and the average transmission rate [39]. In
WSN, the analytic hierarchy process (AHP) is used to extract
the characteristics of sensor information and evaluate the VoI
of sensing information to determine the transmission priority
of sensor data [40]. In the IoV, researchers also use AHP to
evaluate the information value of vehicle data, considering the

three main information features: timeliness, proximity, and
information quality [41]. In theoretical research, the VoI in
Hidden Markov Process is defined as the mutual information
between the observed state sequence and the source state
sequence, and sampling based on VoI can reduce uncertainty
when observing the system [42].

VoI has received extensive attention, but its application in
IoV is limited. It is not appropriate to directly apply the
evaluation method of VoI in WSN to IoV, as most update
cycles in WSN or status update networks are at the time scale
in the level of seconds and most applications are irrelevant
to safety. The recent work on applying the concept of VoI
to IoV is [41]. The difference between our work and [41] is
that we consider more specific AD applications, and there are
differences in the evaluation of VoI.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Communication Model

Considering the vehicle network shown in Fig. 1, with
multiple CAVs in an RSU coverage area, the RSU needs to
collect status information of the CAVs in the area by V2I links
to assist the CAVs in their AD tasks. All vehicles share limited
spectrum resources. The length of each time step is tp. At each
time step, vehicles transmit status information xt to the RSU
through the uplink, while the RSU conveys feedback control
ut to vehicles through the downlink. To simplify the system,
we only focus on the scheduling of uplink communication
resources, and assume that the downlink is perfect, i.e., the
control feedback of all vehicles can be transmitted within
the current time step. The uplink bandwidth is divided into
Nt subcarriers, which are orthogonal. Each subcarrier has the
same bandwidth Ws. At the beginning of each time step, the
RSU should decide how to allocate subcarriers to CAVs, and
each CAV can only be allocated one subcarrier, where the
CAV has a constant transmit power S.

RSU

controller
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Subcarrier

Channel 

Time step

Channel Channel 

t t+n t+2n
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Fig. 1. Vehicles need to report their velocity and position status to the RSU
and get feedback suggestions. The communication resources are divided into
Nt subcarriers, and at each interval tp, the RSU allocates a subcarrier to the
CAV.

1) V2I Communication Cost: We consider the scenario with
constrained resources, i.e., the number of subcarriers is less
than the number of vehicles. Thus only a portion of vehicles
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can communicate in each time step tp. The communication
cost at each time step tp can be formulated as

Jcom(t) =
1

M

M∑
i=1

Ri,t, (1)

where M denotes the total number of vehicles and Ri,t ∈
{0, 1} indicates the subcarrier allocation decision of vehicle i
at time t. Ri,t = 1 means that vehicle i is assigned subcarrier
at time t, and Ri,t = 0 otherwise.

2) V2I Channel Model: According to Shannon’s theorem,
the channel capacity Ci,t between CAV i and RSU at t-th time
step can be formulated as

Ci,t = Ws log2[1 +
Sgi,t(di,t)

σ2
noise

], (2)

where σ2
noise is the noise power, and gi,t(di,t) is the V2I

channel gain. Considering the coverage area of the RSU and
the fast movement of the CAV, we assume that the V2I channel
obeys Rayleigh fading, i.e., the channel gain gi,t(di,t) obeys
an exponential distribution with parameter di,t, where di,t
denotes the distance between the CAV i transmitting antenna
and the RSU receiving antenna at time t. According to [46],
when CAV i is assigned a subcarrier, the probability that the
RSU successfully receives its state information data can be
formulated as

pi,t = Prob

{
Ci,t ≥

Dx

tp

}
= exp

(
−2

Dx
Ws − 1

S
σ2
noised

2
i,t

)
, (3)

where Dx represents the data size that the CAV needs to send
to the RSU within the time step tp. We define Pi,t as the
indicator variable that the RSU has successfully accepted the
CAV i status information at time t when CAV i is assigned
a subcarrier, i.e., Pi,t = 1 when Ci,t ≥ Dx

tp
; and vice versa

Pi,t = 0.

B. Vehicle Control Models for Autonomous Driving

1 2 2 4 2

Subcarrier

Channel 

Time step

Channel Channel 

t t+n t+2n
tp

ሼ𝑥௧ଵ, 𝑥௧ଶሽ ሼ𝑥௧ା௡ଶ , 𝑥௧ା௡ସ ሽ ሼ𝑥௧ାଶ௡ଶ ሽ

1
4

3

2

1

2

3

4
1

23

4

RSU
controller

Path predict model

MPC solver

𝑈௧

ሼ𝑥௧ଵ, 𝑥௧ଶሽ

ሼ𝑥௧ିଵଷ , 𝑥௧ିଵସ ሽ

Estimator

𝑋௧

𝑋௥௘௙

Fig. 2. AD system uses the actual and estimated states to plan the reference
path and feedback control.

We use the point mass model as the vehicle dynamics
model to facilitate path planning, which is similar to [47].
The vehicle control model is MPC, which is widely used in
AD systems [48]. Specifically, MPC controller and path gauge
are arranged on the RSU to provide suggested reference paths
and control feedback to all CAV vehicles, and actuators are
placed on the CAV vehicles. The state of the vehicle consists
of its coordinates and velocity, and the control variable u
is the acceleration of the vehicle, where both velocity and

acceleration have horizontal and vertical components. The
dynamic equations of the vehicle model can be established
as

ẋ = Ȧx+ Ḃu+ ω̇t, (4)

where Ȧ and Ḃ are coefficient matrices obtained by dynamics
model calculations, ω̇t is a disturbance vector. After discretiz-
ing (4), we can get status update equation

xt+1 = Axt +But + ωt, (5)

where A = I + Ȧttp, B = Ḃttp, ωt = ω̇ttp. As shown in
Fig. 2, in each time step, the RSU uses the collected vehicle
state to plan the path for the vehicle. The MPC controller
in the RSU solves the control feedback ut concerning the
planned reference path and estimated state of the vehicle.
When the vehicle communicates with the RSU, the MPC
solver uses the actual state of the vehicle xt to solve the
control feedback ut, and when the RSU fails to receive the
vehicle state, the controller estimates its x′

t according to the
status transition equation, with the estimation error expressed
as e = x′

t−xt. This estimation error will accumulate until the
next time vehicle communicates with the RSU successfully.
The RSU sends the solved control ui,t and a horizon reference
path (reference path for future Np time steps) to vehicles.
According to [49], the average cost function of the vehicle in
time t can be modeled as

Jveh(t) =
1

M

M∑
i=1

{
(xi,t − xref

i,t )TQ1(xi,t − xref
i,t )

+uT
i,tQ2ui,t

}
, (6)

where i represents the vehicle number, M represents the total
number of vehicles at time t, xref

i,t is the reference status of
vehicle i in t-th time step of the reference path, ui,t is the
control decision variable for vehicle i at the t-th time step, Q1

and Q2 are weight parameter matrices that reflect the trade-off
between the control performance and the cost of control. The
vehicle’s overall cost contains two aspects. The first aspect is
the error between the vehicle’s actual status and the reference
status, which can be considered as the cost of performance
loss; the second aspect is the cost of control according to ui,t.
We define the vehicle control problem as the minimization of
the vehicle cost for Nt future time steps

P1 : min
U

M∑
i=1

Np∑
t=1

{
(xi,t − xref

i,t )TQ1(xi,t − xref
i,t )

+uT
i,tQ2ui,t

}
, (7)

s.t. − Umax ≤ ui,t ≤ Umax, (7a)
xi,t ∈ Xpm, (7b)

where NP is the time step path planning model prediction, and
U represents the set of all vehicle control decision variables.
Constraint (7a) represents the vehicle’s dynamics limitation
of acceleration. Constraint (7b) represents xi,t must be in an
allowed status that is safe for the vehicle i. The pure control
problem can be solved by a quadratic programming solver,
which is not detailed for the sake of brevity.
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C. Problem formulation

For the connected autonomous driving system, we aim to
minimize the long-term average joint cost of the system where
joint cost defines as a weighted sum of communication and ve-
hicle costs, where the weight parameter is λ. The optimization
variables include the control decision U and the communica-
tion decision R, where R represents the set of all vehicle
communication decision variables. Different from solving the
control problems independently, the communication decision
also influences vehicle cost. Specifically, the communication
decision plays a role in the accumulation and elimination of the
estimation error ei,t. When CAV successfully communicates
with the RSU, estimation error is eliminated. Taking into
account the estimation error and the communication constraint,
the problem can be formulated as

P2 : min
U,R

lim
T→∞

1

MT

M∑
i=1

T∑
t=1

(xi,t − xref
i,t )TQ1(xi,t − xref

i,t )

+ uT
i,tQ2ui,t + λRi,t, (8)

s.t. − Umax ≤ ui,t ≤ Umax, (8a)
xi,t ∈ Xpm, (8b)

xi,t+1 =

{
Axi,t +Bui,t + ei,t, if Ri,tPi,t = 1;

Axi,t +Bui,t, otherwise,

(8c)
M∑
i=1

Ri,t ≤ Nt, (8d)

lim
T→∞

1

T

T∑
t=1

E[Ri,t] ≤ ρ, (8e)

Ri,t ∈ {0, 1}. (8f)

Constraints (8a) and (8b) are equivalent to constraints (7a)
and (7b), respectively. Constraint (8c) represents the status
update equations and reflects the interplay between commu-
nication and control. Constraint (8d) limits the number of
subcarriers. Constraint (8e) ensures fairness by limiting the
average communication frequency of each vehicle. Constraint
(8f) represents the range of transmission decision.

D. Definition of VoI

The optimization objective of problem P2 aims to minimize
the long-term cost, which is a challenging task to solve di-
rectly. As a solution, we simplify the problem by defining and
evaluating VoI. Specifically, we consider VoI as a reflection of
the future gain of the cost that can be obtained by transmitting
packets. To define VoI, we consider the state information at
time t and assume that the total cost at time t is Jt. The
expected system cost under the transmission decision Rt is
denoted as E[Gt|Rt], where E[·] represents the expectation.
Here, Gt = limT→∞

∑T
t′=t Jt′ denotes the future long-term

cost. VoI is defined as:

V oIt = E[Gt|Rt = 0]− E[Gt|Rt = 1]. (9)

VoI represents the long-term benefit of the current transmission
decision in cost deduction. The system can achieve optimal

long-term cost by choosing the packet with the largest VoI at
the current moment.

IV. EVALUATING VALUE OF INFORMATION

In this section, we begin by identifying the system charac-
teristics that influence costs and proceed to derive short-term
costs to compute short-term VoI. Subsequently, we estimate
long-term costs under communication frequency constraints
based on the short-term costs, employing Lyapunov optimiza-
tion techniques to minimize long-term costs and establish their
upper bounds. Utilizing this upper bound, we introduce a VoI
assessment mechanism based on a queue drift penalty function.
This approach yields an extended VoI expression derived from
the short-term VoI. The final VoI comprehensively reflects the
benefits of transmission decisions in terms of long-term cost
reduction.

A. Short-term Cost Evaluation

Based on the system model, the transmission decision
influences the controller’s perception of the vehicle state and
thus leads to variations in the control variables derived by the
controller. We first derive expressions for the optimal control
and the optimal vehicle cost based on (5), where the variables
solely comprise the vehicle states observed by the controller.
Thus, the short-term cost is easily obtained, and we refer to the
VoI evaluated based on the short-term cost as the short-term
VoI.

The predicted status update equation can then be defined as

x(t+ 1|t) = Ax(t) +Bu(t|t),
x(t+ 2|t) = A2x(t) +ABu(t|t) +Bu(t+ 1|t),
...

x(t+Np) = ANpx(t) +

Np−1∑
i=0

ANp−1−iBu(t+ i|t), (10)

where x(t+n|t) denotes the state at time t+n estimated from
the state at time t, and it can be converted to matrix form as

x(t+ 1|t)
x(t+ 2|t)

...
x(t+Np|t)

 =


A
A2

...
ANp

× x(t)

+


A0B · · · 0 0
A1B B · · · 0

...
...

. . .
...

ANp−1B ANp−2B · · · B

×


u(t|t)

u(t+ 1|t)
...

u(t+Np − 1|t)

 .

(11)

Here, the coefficient matrix is denoted by C and D, with
the resulting equation being Xt = Cx(t)+DUt. The control
vector that needs to be solved is denoted by Ut, and Xt denotes
the status vector for the next Np time steps derived from x(t).
The following lemma can reformulate the control problem (7).
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Lemma 1. The MPC problem (7) can be transformed as

min J =(Xt −Xref )
TQ1(Xt −Xref ) + UT

t Q2Ut

=x(t)TGx(t) + UT
t EUt + 2x(t)THUt, (12)

where the matrix G,E,H are positive definite, while Q1

and Q2 are the quasi-diagonal matrix generated by Q1 and
Q2. The specific form of the above matrix is detailed in the
Appendix.

Proof. See Appendix A.

Without considering constraint (7a), the optimal solution of
problem (7) can be given as

U∗
t = −E−1Hx(t). (13)

U∗
t is optimal when any element u∗

t within U∗
t satisfies

−umax ≤ u∗
t ≤ umax, and u∗

t =
u∗
t

|u∗
t |

× umax otherwise.
Accordingly, the system estimates x(t)′ to calculate ut if the
vehicle does not transmit the status x(t) to the controller. Let
x(t)′ = x(t) + e(t), where e(t) is the estimation error. The
transmission benefit of the vehicle cost can be estimated as

∆J(t) = J(x(t), Ut(x(t)
′))− J(x(t), Ut(x(t)))

=
1

2
Ut(x(t)

′)TEUt(x(t)
′) + x(t)TH(x(t))Ut(x(t)

′)

− 1

2
Ut(x(t))

TEUt(x(t))− x(t)TH(x(t))Ut(x(t))

=
1

2
e(t)THE−1He(t)

=
1

2
e(t)TWe(t) ≥ 0. (14)

∆J represents the benefits of the transmission decision in
short-term vehicle cost reduction, and J(·) corresponds to
the vehicle cost function in (12), while U(·) refers to the
optimal control based on (13). As (14), the transmission benefit
depends on the error in the controller’s estimation of the
vehicle state at the current time, and is always greater than
zero. The short-term VoI can be determined by evaluating the
expression as

V oIs(t) =
1

2
e(t)TWe(t)− λ, (15)

e(t) refers to the estimation error at time t, W is the weight
matrix, and λ represents the weight of the communication cost.
Notably, the calculation of weight matrix W in the expression
needs multiple matrix operations and varies with the time step.

B. Long-term Cost Evaluation

We have evaluated the short-term VoI of packets based on
the transmission benefit in the immediate future. However,
the impact of transmission decisions on long-term costs is
still unknown. In this part, we first simplify the problem by
restricting our analysis to a single vehicle and instead the
vehicle cost by using its approximation. This decouples the
transmission decision from the control decision, allowing us
to evaluate the long-term benefits that can be obtained from
the transmission decision. Next, we represent the cumulative
change in state error using a queue backlog vector and

introduce a virtual queue to represent the communication
frequency constraint. We then transform the single-vehicle
problem into a problem of minimizing the queue drift-penalty
at each time step by the Lyapunov optimization method and
solve the single-vehicle problem. The drift-penalty function
of the vehicle represents a trade-off between queue stability
and cost function expectations, and based on the drift penalty
function, we evaluate the long-term VoI of the vehicle. Then,
we can apply the long-term VoI to the solution of the original
problem.

Original problem (8) can be simplified to single-vehicle
problem as

P3 : lim
T→∞

min
R,U

1

T

T∑
t=1

(Jveh(t) + λJcom(t)) (16)

s.t. (8a), (8b), (8c), (8e), (8f).

To decouple the transmission decision from the control deci-
sion, we can approximate the cost Jvel(t) using

Jveh(t) ∼= Jveh(t|Rt = 1) + ∆J(t)(1−RtPt), (17)

where ∆J(t) denotes the transmission benefits at time t
according to (14) and Jveh(t|Rt = 1) denotes the vehicle cost
when transmission decision Rt = 1. The transmission decision
variable Rt does not affect Jveh(t|Rt = 1). Therefore,
problem (16) can be transformed into the following form

P4 : lim
T→∞

min
R

1

T

T∑
t=1

(∆J(t)(1−RtPt) + λJcom(t))

(18)
s.t. (8e), (8f).

To solve problem (18), we build queue backlog vector Θ(t) =
(Θ1(t), . . . ,ΘNe(t)) and virtual queue H(t). The queue up-
date functions are given as

Θn(t+ 1) = Θn(t) + an(t)− PtRtΘn(t), (19)

H(t+ 1) = [H(t) +Rt − ρ]+. (20)

The vehicle’s error is represented by the queue backlog vector
Θ(t), where Θn(t) represents the queue of the n-th element
in the status x. The increment of the error component with
expectation µn and variance δ2n is represented by an(t).
The virtual queue Ht indicates the update frequency, where
[H]+ = max(H, 0). The update frequency constraint (8e) is
maintained by H(t) as lemma 2 which was proven in [37]. The
queue symbol Ht,Θt have the same meaning as H(t),Θ(t)
for the sake of symbol simplicity. Then, we used Lyapunov
optimization to solve problem (18).

Lemma 2. If queues H are mean rate stable, Ht satisfy with

lim
T→∞

E[Ht]

T
= 0. (21)

Then,

lim
T→∞

1

T

T∑
t=1

Rt ≤ ρ. (22)
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We define Lyapunov function as Lt = 1
2H

2(t) +∑Ne

n=1 θnΘ
2
n(t), where θn is weight parameter. The drift of

the Lyapunov function is

∆t = E[Lt+1 − Lt|Θt, Ht]. (23)

According to update function (19) and (20), we can derive the
drift of Θt and Ht as

Θ2
t+1 −Θ2

t = (Θt + at −ΘtRtPt)
2 −Θ2

t

= Θ2
tP

2
t R

2
t − 2ΘtatPtRt − 2Θ2

tRtPt + 2Θtat + a2t

= a2t + 2Θtat(1−RtPt)−Θ2
tRtPt, (24)

H2
t+1 −H2

t

= {max{Ht − ρ+Rt, 0}}2 −H2
t

= 2HtRt − 2Htρ+ (Rt − ρ)2 ≤ 2Ht(Rt − ρ) + 1, (25)

then, we can derive the upbound of ∆t as

E[Lt+1 − Lt|Θt, Ht]

≤ {Ht −
Ne∑
n=1

θnp(2µnΘn(t) + Θ2
n(t))}E[Rt|Θt, Ht]

+
1

2
(1− 2ρHt) +

Ne∑
n=1

θnδ
2
n + 2

Ne∑
n=1

θnµnΘn(t).

(26)

The penalty ft is defined as ft = λRt+
∑Ne

n=1(1−Rt)ξtΘ
2
n(t)

which represents the value of the objective function at time t.
E[ft|Θt, Ht] has the expression as

E[ft|Θt, Ht] =E[Rt|Θt, Ht](λ−
Ne∑
n=1

ξnΘ
2
n(t))

+

Ne∑
n=1

ξnΘ
2
n(t). (27)

Therefore, the drift-plus-penalty E[Lt+1 − Lt + V ft|Θt, Ht]
have the upbound as

E[Lt+1 − Lt + V ft|Θt, Ht]

≤ {Ht + V λ− 2p

Ne∑
n=1

θnµnΘn(t)}E[Rt|Θt, Ht]

−
Ne∑
n=1

(pθn + V ξn)Θ
2
n(t)E[Rt|Θt, Ht]

+
1

2
(1− 2ρHt) +

Ne∑
n=1

θn(δ
2
n +

V ξn
θn

Θ2
n(t) + 2µnΘn(t))

= U(Rt, Ht,Θt) +Res. (28)

In (28), U(Rt, Ht,Θt) is calculated as

U(Rt, Ht,Θt) = {Ht + V λ− 2p

Ne∑
n=1

θnµnΘn(t)

−
Ne∑
n=1

(pθn + V ξn)Θ
2
n(t)}E[Rt|Θt, Ht],

(29)

the term Res is not related to E[Rt|Θt, Ht] and is defined by

Res =
1

2
(1− 2ρHt) +

Ne∑
n=1

θn(δ
2
n +

V ξn
θn

Θ2
n(t) + 2µnΘn(t)).

(30)

According to Lyapunov optimization theorem in [50], the
upper bound on the expectation of ft can be guaranteed by
minimizing drift-plus-penalty.

Theorem 1. The penalty function can obtain an upper bound
by minimizing drift-plus-penalty in each time step as

min
Rt

(∆t + ft) (31)

s.t. Rt ∈ {0, 1}. (31a)

Then,

lim
T−>∞

1

T

T∑
t=1

E[ft] ≤ f∗ +
γ

V
, (32)

where f∗ = λρ, θi =
V ξi(1−ρ)

ρp , γ = 1
2 +

∑n
i=1 θiδ

2
i .

Proof. See Appendix B.

Since Res does not contribute to minimizing drift-plus-
penalty, the value of drift-plus-penalty depends only on the
preceding term U(Rt, Ht,Θt). Therefore, problem (18) can
be transformed to

P5 : min
Rt

U(Rt, Ht,Θt) (33)

s.t. Rt ∈ {0, 1}, (33a)

The solution of problem P5 at each time step demands only
the identification of whether U(Rt, Ht,Θt) is greater than 0.
This effective approach to minimizing the drift-plus-penalty
function is referred to as strategy π. The upper bound on the
average cost of the single-vehicle problem, which is desirable
under strategy π, can be established using Theorem 1. There-
fore, for any vehicle that adheres to strategy π, the long-term
cost under transmission decision Rt can be evaluated as

Eπ[Gt|Rt] = lim
T→∞

T∑
t′=t

E[Jt′ ]

= lim
T→∞

T∑
t′=t

E[ft′ + Jvel(t
′|R′

t = 1)]

= lim
T→∞

ft +

T∑
t′=t+1

E[ft′ ] +
T∑

t′=t

E[Jvel(t′|R′
t = 1)]

≤ U(Rt, Ht,Θt)

V
+Resf , (34)

where Resf is not related to Rt and is defined by

Resf = lim
T→∞

(T − t− 1)(f∗ +
γ

V
) + (T − t)Jvel

+
Res−∆t

V
, (35)
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where Jvel is the average vehicle cost which is not associated
with the transmission decision. Then, the long-term VoI can be
expressed as the drift-plus-penalty benefit after transmission

V oI(t) = Eπ[Gt|Rt = 0]− Eπ[Gt|Rt = 1]

≤ U(0, Ht,Θt)

V
− U(1, Ht,Θt)

V

=
1

V
{

Ne∑
n=1

(pθn + V ξn)Θ
2
n(t)− V λ−Ht}

= {
Ne∑
n=1

ξnΘ
2
n(t)− λ}+ 1

V

Ne∑
n=1

pθnΘ
2
n(t)−

Ht

V
.

(36)

Based on the above analysis, selecting a value function
to measure the benefits of successful transmission needs to
consider three crucial factors: status estimation error (which
corresponds to short-term VoI), queue drift estimation, and
virtual queue backlog. Queue drift measures the implications
of the decision on future status, while virtual queue reflects
the frequency of transfers over time. Long-term VoI will
henceforth be referred to as VoI in the subsequent sections
unless otherwise specified.

V. VOI SCHEDULING STRATEGY FOR MULTI-VEHICLE
CONNECTED AUTONOMOUS DRIVING PROBLEM

In this section, we propose two VoI-based packet-level
communication resource scheduling strategies in multi-vehicle
scenarios: one for centralized networks where the RSU senses
the VoI of all CAVs and allocates sub-carriers accordingly,
and another for distributed networks where CAVs evaluate the
VoI of their own packets to determine the appropriate time to
transmit. Moreover, the expected system average cost upper
bound of the VoI strategy in a centralized network is analyzed.

A. VoI Strategy in Centralized Networks

The multi-vehicle scenario requires the RSU to make
scheduling decisions at each time step. Then, the multi-vehicle
cost problem at time t can be formulated as minimizing the
future cumulative cost of all vehicles. The future cumulative
cost of vehicles can be expressed as

M∑
i=1

T∑
t′=t

Ji,t′ =

M∑
i=1

E[Gi,t|Ri,t]

=

M∑
i=1

Ri,tE[Gi,t|Ri,t = 1] + (1−Ri,t)E[Gi,t|Ri,t = 0]

=

M∑
i=1

E[Gi,t|Ri,t = 0]− V oI(i, t)Ri,t, (37)

where Ji,t denotes the total cost of vehicle i at time t, and
E[Gi,t|Ri,t] denotes the expected future cumulative cost under
decision Ri,t. Then, the problem of minimizing the future
cumulative cost can be transformed into the VoI maximization
problem. In centralized networks, maximizing VoI is simple;
RSU senses the VoI evaluated by CAVs and schedules N

packets with the highest VoI at the current time. This problem
of maximizing VoI is formulated as

P6 :max
R

M∑
i=0

V oI(i, t)Ri,t, (38)

s.t.

M∑
i=1

Ri,t ≤ N, (38a)

which can be solved using a simple sorting algorithm, and the
subcarriers can be allocated to the vehicle in accordance with
the sorted VoI values.

To show the system performance achieved by the VoI
scheduling strategy, we analyze the average cost of the system
when using the VoI strategy (πV ). As in section IV, we
use a similar approach, where let ft = E[

∑M
i=1 λRi,t +∑M

i=1

∑Ne

n=1(1 − Ri,t)ξi,tΘ
2
i,n(t)}] and Lt =

1
2

∑M
i=1 Hi,t +∑M

i=1

∑Ne

n=1 θi,nΘi,n(t). We have drift-plus-penalty as

E[Lt+1 − Lt − V ft] ≤
M∑
i=1

U(Ri,t, Hi,t,Θi,t) +ResM ,

(39)

ResM =
1

2

M∑
i=1

(1− 2ρHi,t)

+

M∑
i=1

Ne∑
n=1

θn(δ
2
i,n +

V ξi,n
θi,n

Θ2
i,n(t) + 2µi,nΘi,n(t)). (40)

According to Theorem 1, the average cost can be estimated
as

πV = min

M∑
i=1

U(Ri,t, Hi,t,Θi,t),

lim
T→∞

1

T

M∑
i=0

T∑
t=0

EπV [ft]

≤ (λρ+
1

2V
+

Nn∑
n=1

ξi,n(1− ρ)

ρp
δ2i + ˆJveh)M,

(41)

where ˆJveh denotes average vehicle cost at full transmission
in (17). The VoI-based communication strategy for CAVs has
an upper bound on the average cost, which depends on the
error increment variance at and maximum communication
frequency ρ. This boundary ensures that the performance of
the CAVs does not fall below a threshold. The convergence of
the average cost is not guaranteed without the boundary, which
may lead to the actual path deviating substantially from the
reference path and compromising safety in the AD system.

B. VoI Strategy in Distributed Networks

The challenge of incorporating the VoI concept into dis-
tributed network architectures is that no single node has
the ability to sense the global VoI and assign transmission
priority to vehicles. To overcome this challenge, we propose an
improved CSMA/CA protocol that applies VoI to distributed
network architectures. CSMA/CA is a well-known distributed
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Fig. 3. CSMA/CA sets the back-off timer to avoid contention between nodes.
Use the binary exponential back-off algorithm to adjust the contention window
for retransmission and double the range of the contention window for each
retransmission to avoid channel congestion.

network access protocol commonly used in wireless networks
to regulate access to a shared medium. As depicted in Fig. 3,
when a node receives data packets, it first senses the channel
state. If the channel remains idle for a Distributed Inter-frame
Spacing (DIFS), the node initiates the backoff process. During
the backoff process, the node randomly selects a backoff time
within the contention window (typically set to a default initial
value of 31 in the 802.11 standards). The node periodically
senses the channel during each slot time, decrementing its
random backoff counter if the channel is idle. If the channel is
busy due to ongoing transmission by another node, the backoff
timer is frozen until the channel becomes idle again. Once the
backoff timer reaches zero, the node is permitted to transmit its
data. If the packet is not successfully sent (no ack is received)
then the contention window length is expanded, and vice versa
the contention window length is reset.

Algorithm 1 Distributed Scheduling based on VoI

Input: Vehicle status xi,t, reference status xref
i,t , time step t,

vehicle vi, queues Hi,t,Θi,t.
1: xest = estimate(xi,t, x

ref
i,t )

2: at = (xest − xi,t)
TW(xest − xi,t)

3: Calculate V oI by (34)
4: Update index Ct according to (40)
5: Set Tback according to (41)
6: Waiting for contention result Ri,t

7: Update queues Hi,t,Θi,t according to (17) and (18)
Output: Index Ct

The CSMA/CA protocol is employed to mitigate channel
conflicts by employing a binary exponential backoff timer.
One crucial aspect of this protocol is the determination of
the contention window length. The objective of our modified
protocol is to adapt the length of the contention window
based on the VoI in order to prioritize packets. Specifically,
we introduce a binary index parameter at time t, denoted as
Ct, for each CAV. As the CAV periodically transmits state
information packets to the RSU, any previously untransmitted
packet from the same vehicle is discarded when a new state
information packet needs to be transmitted. Subsequently, the
binary index parameter Ct is updated according to the VoI of
the newly arrived packet, and the CAV determines the initial
contention window length based on the updated index Ct. The

initial contention window length is set as 2Ct . Additionally,
the backoff timer is reset based on the contention window. The
subsequent backoff process aligns with the original CSMA/CA
protocol. The CAV awaits a successful transmission signal
before generating the next packet, and the queue required to
evaluate the VoI is updated based on the transmission’s success
or failure. Finally, we get the distributed VoI scheduling
strategy as algorithm 1.

Ct =

{
max{Ct−1 − 1, 0}, if V oIt ≤ 0;

min{Ct−1 + 1, 5}, otherwise,
(42)

Tback = 2Ct + random(0, α), (43)

where α is a parameter for reducing the probability of col-
lision, and the best setting of α can be obtained empirically.
When a CAV generates a new packet at time t in the system
model, Algorithm 1 is executed. The first step is to evaluate
the VoI of the packet. If the VoI is greater than 0, indicating
that the information is more valuable than the transmission
cost, the contention window length is shortened. Conversely,
if the VoI is lower or equal to 0, the contention window
length is increased. The index Ct is updated according to (42),
with the constraint that it remains within the range of 0 to 5,
corresponding to CW lengths of 1 to 32. Unlike the original
CSMA/CA protocol, our improved protocol sets the backoff
timer differently. The backoff timer Tback is determined by
adding a random time to the contention window length as
(43). This setup retains the random nature of the backoff
timer to reduce the probability of collisions. Additionally,
the improved protocol introduces relative priority for packets
with different VoI, ensuring that packets with higher VoI have
shorter contention window lengths and then have a higher
probability of being transmitted first. Finally, the CAV waits
for the contention result Rt, when Rt = 1 is an indication that
the packet was successfully transmitted within the specified
time and Rt = 0 vice versa. Rt is used to update the queue
needed to evaluate the VoI.

VI. PERFORMANCE EVALUATION

This section evaluates the performance of two primary tasks
in the AD scenario: path tracking and intersection passing.
Path tracking is essential for AD systems as it involves
the safety of CAVs and any deviations from this path are
considered performance degradation. The path-tracking task
evaluation includes single-vehicle and multi-vehicle scenarios
to analyze path-tracking performance, trajectory distribution,
cost performance and show the advantages of the proposed
strategy. In contrast, crossing intersections is a complex task.
The intersection has a high impact on traffic efficiency,
considering factors such as high traffic flow and accident-
proneness. The ideal communication strategy should enable
vehicles to coordinate and safely navigate intersections without
reliance on traffic lights. Thus, we compare the performance of
different communication strategies in intersection simulations,
mainly in terms of safety and passing efficiency. All simulation
parameters are summarized in Table I.
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Fig. 4. The trajectory distribution with different strategies in path tracking, VoI represents the VoI strategy discussed in Section IV. The gray area adds the
noise N of the control system from −15 to −10 and aims to visually demonstrate the guarantees of VoI on AD performance. Parameter ρ = 0.1 represents
the maximum average communication frequency.

TABLE I
SIMULATION PARAMETERS

Parameter Value
Vehicle speed 5 ∼ 15m/s
Vehicle acceleration −5 ∼ 5m/s2

Sample period 50 ms
Number of sub-channel 20
Transmit power 20 dBm
Subcarrier bandwidth 1 MHz
Noise power -174 dBm
Weight parameter λ 10
Weight parameter V 10
Weight parameter ξ [2,2,5,5]
Weight parameter δ2 [0.00002, 0.00002, 0.03, 0.03]
Intersection type 4
Intersection width 3.5m
Number of lanes 4

A. Single-Vehicle Path Tracking Performance

To derive the impact of wireless communication resource
limitation on the performance of the AD task, we use the mean
square error (MSE) of the actual state path versus the reference
state path to reflect the performance of a single path tracking
task. The mean µ and standard deviation σ of the path MSE
over multiple experiments are used to reflect the distribution
of performance. The tracking effect is shown intuitively in Fig.
4 by selecting the sine curve y = 10 sin 0.05x as the reference
path. We performed 500 independent simulations of the path
tracking based on each of the three communication strategies.
The VoI strategy is as described in Section V using the VoI

evaluation function (36). The AoI strategy is defined as the
RSU scheduling the priority between packets based on the
AoI of the vehicle. The calculation of AoI is similar to that
in [20]. The random strategy chooses communication timing
randomly, and all three strategies maintain an equal average
communication frequency.

We counted the deviation of all the actual paths from
the reference paths under the three strategies. The paths are
divided into two regions according to the deviation size,
where the light blue region represents the actual paths whose
deviations lie from the upper bound to the upper quartile
and the lower bound to the lower quartile, while the orange
region represents the paths whose deviations lie between the
upper and lower quartile. The dark blue dotted line represents
the reference path. The entire experiment process is divided
into two noise regions. The gray area marked as the time
step 150− 200 has higher control noise, indicating that more
attention should be paid to the change of the vehicle state.
As shown in Fig. 4, the strategy based on VoI scheduling
has the best boundary performance which represents the case
where the statistical trajectory deviates the most from the
reference path, especially in the high-noise region. Although
the scheduling strategy based on AoI achieves similar results in
the upper and lower quartiles as the VoI strategy, the boundary
performance is significantly worse.

The status (X position, Y position, X velocity, Y veloc-
ity) MSE and standard deviation of the three scheduling
strategies are shown in Fig. 5. Although the advantages of
the VoI strategy in average MSE are not significant, the
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Fig. 5. Setting parameters N = −15, ρ = 0.1, the histogram of position and velocity MSE distribution of vehicles with different strategies in path tracking,
where X represents the horizontal direction and Y represents the vertical direction.

improvement in standard deviation compared with the AoI
strategy is evident. The lower standard deviation advantage
of VoI strategies shown in Fig. 4 and Fig. 5 play an essential
role in the performance of AD tasks, the proposed strategy
ensures that the system performance is affected as little as
possible in extreme cases. For AoI strategies, although the
average performance is also good, it lacks the ability to deal
with extreme environments, making its safety impossible to
guarantee.

To further exemplify how VoI and AoI strategies affect AD
task performance, we show the variation of some parameters
with time steps in a path-tracking task. Fig. 6(a) and Fig. 6(b)
show the difference between the actual vehicle velocity and the
expected velocity. Fig. 6(c) and Fig. 6(d) illustrate the change
in the lateral and longitudinal accelerations of the control
variables. Fig. 6(e) presents the variation of square error
between actual status and reference status over time. Fig. 6(f)
shows the communication opportunities decided by the two
scheduling strategies. The above experimental results show
the on-demand nature of the VoI strategy, which is sensitive
to emergent conditions. Specifically, the presence of higher
control noise during the 150-200 time step region increases
the likelihood of trajectory deviation compared to other time
periods. To mitigate this effect, the VoI strategy identifies
variations in packet importance and increases the frequency
of packet transmissions during this interval. By doing so, the
controller can promptly adapt the control variables, resulting
in a timely response that reduces the deviation between the
actual and reference paths. Compared with the AoI strategy,
which focuses more on the freshness of information, the VoI
indicator reflects the impact of information on the system.
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Fig. 6. Vehicle velocity, acceleration, square error, and transmission timing
under VoI and AoI strategy.

B. Multi-Vehicle Path Tracking Performance

The simulation experiments conducted in this section aim
to evaluate the performance of path tracking in a multi-
vehicle scenario, where each vehicle follows its own reference
path, and collisions between vehicles are not considered. The

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3355119

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on January 24,2024 at 05:05:41 UTC from IEEE Xplore.  Restrictions apply. 



12

network architecture is divided into two scenarios: centralized
and distributed. In the centralized network scenario, the RSU
allocates sub-carriers to the vehicles at each time step. In
contrast, the distributed network scenario involves all vehicles
sharing the channel resources without centralized allocation.
Fig. 7 shows the relationship between average communication
cost and average vehicle cost, where the horizontal coordinate
is the vehicle number. Setting the number of subcarriers
Nt = 1 and noise level at −15, as the number of vehicles in-
creases, the limited communication resources lead to a gradual
decrease in the average communication cost and an increase
in the vehicle cost, representing a decrease in performance.
The remaining four curves represent the vehicle cost using
different strategies, and the VoI strategy is advantageous in
terms of reducing vehicle cost.
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Fig. 7. Average vehicle cost and communication cost of vehicles under
different strategies

As shown in Fig. 8, we present the variation of the average
total cost for CAVs as vehicle density increases. In addition to
the previously mentioned four strategies, we have included two
additional special curves for comparison. These two curves
represent the full transmission cost and the theoretically upper
bound cost obtained using the VoI strategy as estimated in
(41), with the parameters involved in calculating the cost
bound detailed in Table I. The full transmission strategy
does not adhere to subcarrier resource constraints, meaning
that all CAVs can successfully communicate with the RSU
within each time step. Consequently, its average total cost
remains largely constant. The total costs of the remaining
four strategies exhibit a trend of decreasing followed by an
increase. This is due to the fact that when vehicle density is
low, communication costs constitute the majority of the total
cost. As vehicle density increases, the average communication
frequency, and hence communication costs, decrease. During
this period, the degradation in control performance (vehicle
cost) is relatively small, resulting in a declining total cost.
However, as vehicle density further increases, the degradation
in control performance becomes more severe, leading to an
increase in total cost. Among these four strategies, the VoI
strategy effectively manages the increase in average total cost.
Furthermore, it is worth noting that our proposed theoretical

upper bound is effective and closely aligns with the cost curve
achieved by the actual VoI strategy.
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Fig. 8. Average total cost under different strategies and the upper bound of
centralized VoI strategy.

Fig. 7 and Fig. 8 also show the performance of the dis-
tributed VoI strategy, setting parameter α = 7. As in Algorithm
1, CAVs adjust the contention window size based on VoI to
obtain the performance between the centralized VoI strategy
and the AoI strategy. We show the transmission timing diagram
for the case of 10 CAVs in 15-time steps as shown in Fig. 9(a).
Fig. 9(b) and Fig. 9(c) show the contention window and VoI
variation of CAVs in the corresponding time. The CAV nodes
with a higher VoI are given a smaller contention window, and
they are prioritized for scheduling within a maximum of 5-
time steps.

0 100 200 300 400 500 600 700

Se
nd

Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 Node9 Node10 BS

0 100 200 300 400 500 600 700
Node1
Node2
Node3
Node4
Node5
Node6
Node7
Node8
Node9

Node10
BS

Node10            
Node9            
Node8            
Node7            
Node6            
Node5            
Node4            
Node3            
Node2            

0 100 200 300 400 500 600 700
Node1            

0 100 200 300 400 500 600 700
N1:0.5 N4:-0.3 N1:-0.8 N3:-0.8 N2:-0.8 N4:-0.8 N6:-0.8 N2:-1.2 N5:-1.2 N6:-1.2 N6:-1.0 N9:-0.8 N2:-1.2 N5:-1.2 N5:-1.0
N8:0.51 N1:0.0 N9:-0.8 N1:-0.59 N10:-0.8 N5:-0.8 N4:-0.6 N3:-1.0 N3:-0.8 N5:-1.0 N7:-0.8 N6:-0.8 N1:-1.2 N2:-1.0 N4:-0.8
N4:0.54 N5:0.03 N4:-0.1 N9:-0.59 N3:-0.6 N10:-0.6 N5:-0.6 N6:-0.6 N2:-0.53 N1:-0.8 N8:-0.8 N8:-0.6 N9:-0.6 N1:-1.0 N10:-0.8
N6:0.54 N6:0.03 N5:0.02 N5:0.01 N9:-0.39 N2:-0.6 N10:-0.4 N5:-0.4 N6:-0.4 N2:-0.29 N5:-0.8 N5:-0.6 N6:-0.59 N9:-0.39 N2:-0.8
N5:0.56 N8:0.04 N6:0.02 N6:0.01 N6:0.0 N3:-0.4 N2:-0.39 N4:-0.39 N4:-0.19 N10:0.01 N1:-0.6 N7:-0.59 N8:-0.39 N6:-0.39 N1:-0.8
N7:0.69 N7:0.23 N8:0.04 N8:0.06 N5:0.0 N9:-0.18 N9:0.02 N10:-0.2 N10:0.01 N4:0.03 N3:-0.39 N1:-0.4 N5:-0.38 N8:-0.19 N6:-0.19
N3:0.74 N3:0.24 N7:0.23 N7:0.25 N8:0.09 N6:0.0 N7:0.04 N7:0.05 N9:0.05 N9:0.06 N2:-0.09 N3:-0.17 N7:-0.38 N7:-0.17 N7:0.03
N9:1.17 N9:0.78 N3:0.26 N4:0.39 N1:0.23 N7:0.03 N8:0.09 N9:0.05 N7:0.05 N7:0.07 N10:0.01 N10:0.01 N10:0.01 N10:0.03 N8:0.03
N10:1.34 N10:0.79 N10:0.86 N10:0.88 N7:0.26 N8:0.09 N1:0.66 N1:0.74 N1:0.74 N3:1.02 N4:0.04 N4:0.06 N3:0.04 N3:0.04 N3:0.06
N2:2.58 N2:1.94 N2:1.87 N2:1.8 N4:0.43 N1:0.44 N3:1.03 N8:3.99 N8:4.0 N8:4.31 N9:0.09 N2:0.18 N4:0.58 N4:0.68 N9:1.06

(c)

(a)

(b)

Fig. 9. (a) Transmission time under distributed VoI strategy in 15-time step;
(b) contention window of each vehicle node in 15-time step; (c) VoI of each
vehicle node in 15-time step.

The simulation results on trajectory tracking cost analysis
are shown in Fig. 10. The simulation includes 20 CAVs and
limits the number of subcarriers to 2 for both VoI and AoI
strategies, while the full-transmission strategy boasts 20 sub-
carriers. A total of 500 Monte Carlo experiments are conducted
to investigate the matter further. As the level of the noise
parameter, the performance of the VoI strategy and the AoI
strategy undergoes a gradual decrease as shown in Fig. 10(a).
This loss in performance can be attributed to the heightened
interference posed by the noise. A comparison with a full-

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3355119

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on January 24,2024 at 05:05:41 UTC from IEEE Xplore.  Restrictions apply. 



13

transmission strategy is made to evaluate the overall efficacy
of the VoI and AoI strategies. The performance of the VoI
strategy undergoes a relatively lower degradation as compared
to the AoI strategy, especially when subjected to higher noise
levels. This is due to the attention of the VoI strategy for the
estimation error i.e., taking into account the impact of higher
noise levels and adapting accordingly, thereby exhibiting a
more robust performance. Fig. 10(b) shows the mean control
cost for various scheduling strategies. We can observe that as
the noise escalates, the control cost experiences a proportional
increase. In comparison to the all-transmission strategy, which
is heavily dependent on communication frequency, both VoI
and AoI tactics carry a heavier control cost burden. Hence, we
found that VoI scheduling does not come without a price and
that there is a cost associated with its implementation. Notably,
we also find that the utility of VoI strategy is confined within
the feasible region of the control variable ut. The reason for
this is obvious since there is a limit to the control cost that
the vehicle can pay.
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Fig. 10. (a) Average vehicle cost in different strategies. (b) Average control
cost in different strategies.

Then, we demonstrate the impact of the weight parameter
V of the Lyapunov penalty function on the VoI strategy.
The experiment is configured with 20 CAVs and a long-
term average communication frequency constraint is set as
limT→∞

1
T

∑T
t=1 E[Ri,t] ≤ 0.02. Six different strategies are

considered, among which the VoI strategy with V set to 0
represents the short-term VoI strategy without considering
the long-term average communication frequency constraint.
When V is set to [1, 5, 10, 100], it represents long-term VoI
strategies. The last one is the AoI strategy. As shown in
Fig. 11, although the short-term VoI strategy has a very
low average cost, it fails to maintain the long-term average
communication frequency constraint. The AoI strategy is at
the other extreme, completely disregarding cost while strictly
ensuring the communication frequency constraint. The long-
term VoI strategy can be considered as a compromise between
the short-term VoI strategy and the AoI strategy, controlled by
the parameter V (i.e., the larger the value of V , the more
emphasis is placed on whether the short-term communication
frequency violates the constraint), seeking a balance between
cost and constraints.

C. Intersection Performance

The simulation experiment is conducted in a typical two-
lane, four-direction intersection scenario. Vehicles in the sce-
nario are restricted to travel straight ahead. The RSU issues
commands to vehicles based on their status to ensure smooth
passage through the intersection. CAVs are required to follow
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Fig. 11. (a) Average cost with different parameter V . (b) Average commu-
nication frequency with different parameter V .

the reference path provided by the RSU to avoid collisions
with other vehicles. The assumption is made that when vehi-
cles precisely follow the reference path, the system achieves
optimal traffic efficiency. The simulation duration is set to
40000-time steps, with each time step lasting 50 ms. The
average traffic flow into the intersection follows a Poisson
distribution with a rate of 50 vehicles per minute. The number
of subcarriers is set to 2. The experiment primarily compares
the effects of two communication scheduling strategies: the
VoI strategy and the AoI strategy. Additionally, a full transmis-
sion strategy without considering communication constraints
is employed as a benchmark for optimal performance, where
all CAVs can communicate with the RSU at each time step.
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Fig. 12. (a) Pass time in intersection with different strategies, prefect
means each vehicle can communicate with equipment at any time. (b) MSE
in intersection with different strategies, prefect means each vehicle can
communicate with equipment at any time

The distribution of pass times for different strategies are
depicted in Fig. 12(a). Pass time refers to the duration between
a vehicle entering the intersection and successfully crossing
it. Pass time serves as a measure of traffic efficiency. The
results demonstrate that both the centralized and distributed
VoI strategies yield a lower average pass time and exhibit
a denser distribution of pass times. Furthermore, Fig. 12(b)
illustrates the distribution of MSE between the actual vehicle
paths and the expected paths for different strategies. The
VoI strategies outperform the other strategies, demonstrating a
smaller average MSE. In terms of performance loss, the cen-
tralized VoI strategy exhibits approximately a 20% difference
compared to the optimal strategy. Moreover, the centralized
VoI strategy demonstrates an improvement of approximately
25% in traffic efficiency compared to the AoI strategy.

VII. CONCLUSION

In this paper, a novel communication resource scheduling
strategy based on VoI has been proposed to measure the impact
of information delivery on system performance. The aim is
to ensure that the system’s performance is partially guaran-
teed, even when faced with tight communication resources.
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This approach has considered both central and distributed
communication architectures and meets the driving tasks and
communication constraints in connected autonomous driving.
The numerical simulation results have shown that our scheme
outperforms other strategies in terms of control effect and
system cost. Moreover, the intersection simulation experiments
have demonstrated that the proposed scheme can still achieve
results in complex multi-vehicle scenarios. In future work,
we plan to extend the application of VoI to other networks,
and some AI methods may be employed to simplify the VoI
acquisition process, given its close association with the scene.

APPENDIX A
PROOF FOR LEMMA 1

Let Xt be the status vector derived from x(t), and Ut be
the decision column vector. Therefore, the coefficient matrix
is derived as

Xt = Cxt +DUt, (44)

Xref =
Xref

xt
· xt = Crefxt, (45)

Xt −Xref = Cxt −Xref +DUk

= (C −Cref )xt +DUk = Cxt +DUk. (46)

The original problem can be transformed as

J =(Xt −Xref )
TQ1(Xt −Xref ) + UT

t Q2Ut

=xT
t C

TQ1Cxt + UT
t (DTQ1D +Q2)Ut + 2xT

t C
TQ1DUt

=xT
t Gxt + UT

t EUt + 2UT
t Hxt. (47)

Without considering constraints, the problem can obtain the
optimal value of U by derivation. We have

U∗
t = −E−1Hxt. (48)

APPENDIX B
PROOF FOR THEOREM 1

Form (20) we know

Lt+1 − Lt + V ft

≤ {Ht + V λ− 2p

n∑
i=1

θiµiΘi(t)−
n∑

i=1

(pθi + V ξi)Θ
2
i (t)}Rt

+
1

2
(1− 2ρHt) +

n∑
i=1

θi(δ
2
i +

V ξi
θi

Θ2
i (t) + 2µiΘi(t)).

(49)

The sum of drift-plus-penalty in T time slot is

T∑
t=0

{Lt+1 − Lt + V ft} = LT+1 − L0 + V

T∑
t=0

ft

≤
T∑

t=0

{Ht + V λ− 2p

n∑
i=1

θiµiΘi(t)−
n∑

i=1

(pθi + V ξi)Θ
2
i (t)}Rt

+
1

2

T∑
t=0

(1− 2ρHt) +

T∑
t=0

n∑
i=1

θi(δ
2
i +

V ξi
θi

Θ2
i (t) + 2µiΘi(t)).

(50)

For ease of calculation, set the mean µ to 0. We can simplify
the upper bound of V

∑T
t=0 ft as

V

T∑
t=0

ft ≤
T∑

t=0

{Ht + V λ−
n∑

i=1

(pθi + V ξi)Θ
2
i (t)}Rt

+
1

2

T∑
t=0

(1− 2ρHt) +

T∑
t=0

n∑
i=1

θi(δ
2
i +

V ξi
θi

Θ2
i (t))

+ L0 − LT+1. (51)

The expectation of ft can be obtained as

V

T∑
t=0

E[ft] ≤ ρ

T∑
t=0

{Ht + V λ−
n∑

i=1

(pθi + V ξi)Θ
2
i (t)}

+
1

2

T∑
t=0

(1− 2ρHt) +

T∑
t=0

n∑
i=1

(θiδ
2
i + V ξiΘ

2
i (t))

+ L0 − LT+1

≤ T

2
+ TV λρ+ T

n∑
i=1

θiδ
2
i + L0

+

T∑
t=0

n∑
i=1

(V ξi(1− ρ)− ρpθi)Θ
2
i (t). (52)

Let θi =
V ξi(1−ρ)

ρp and L0 < ∞, and the series (52) can be
eliminated. Thus, we can get

lim
T→∞

1

T

T∑
t=0

E[ft] ≤ λρ+
1
2 +

∑n
i=1 θiδ

2
i

V
. (53)

Theorem 1 can be proved.
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of information based data retrieval in uwsns,” Sensors, vol. 18,
no. 10, 2018. [Online]. Available: https://www.mdpi.com/1424-8220/
18/10/3414

[34] F. A. Khan, S. A. Khan, D. Turgut, and L. Bölöni, “Greedy path planning
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